import gradio as gr import torch import numpy as np from PIL import Image from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 def load_model(): """Loads the pre-trained model and tokenizer with quantization configurations.""" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=TORCH_TYPE, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, quantization_config=quantization_config, device_map="auto" ).eval() return model, tokenizer def predict_image(prompt, image, temperature, model, tokenizer): """Generates predictions based on the image and textual prompt.""" image = image.convert("RGB") # Ensure image is in RGB format # Convert image to model-expected format inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=prompt, images=[image], history=[], template_version='chat' ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 512, "pad_token_id": 128002, "top_k": 1, "do_sample": False, "top_p": 0.1, "temperature": temperature, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response model, tokenizer = load_model() def inference(image): """Generates a description of the input image.""" try: if not image: return "Please upload an image first." prompt = "Describe the image and the components observed in the given input image." temperature = 0.3 response = predict_image(prompt, image, temperature, model, tokenizer) return response except Exception as e: return f"An error occurred during analysis: {str(e)}" def create_interface(): """Creates the Gradio interface for Image Description System.""" with gr.Blocks() as demo: gr.Markdown(""" # Image Description System Upload an image, and the system will describe the image and its components. """) with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload Image", type="pil") analyze_btn = gr.Button("Describe Image", variant="primary") with gr.Column(): output = gr.Textbox(label="Image Description", lines=10) analyze_btn.click( fn=inference, inputs=[image_input], outputs=[output] ) return demo if __name__ == "__main__": demo = create_interface() demo.queue().launch(share=True)