Spaces:
Runtime error
Runtime error
import gradio as gr | |
import io | |
import numpy as np | |
import torch | |
from decord import cpu, VideoReader, bridge | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import BitsAndBytesConfig | |
MODEL_PATH = "THUDM/cogvlm2-llama3-caption" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
# Configurable constants | |
NUM_FRAMES = 24 # Default number of frames to extract | |
MAX_NEW_TOKENS = 2048 | |
TOP_K = 1 | |
TOP_P = 0.1 | |
DEFAULT_TEMPERATURE = 1.0 | |
# Delay Reasons for Each Manufacturing Step | |
DELAY_REASONS = { | |
"Step 1": ["Delay in Bead Insertion", "Lack of raw material"], | |
"Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"], | |
"Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"], | |
"Step 4": ["Delay in Bead set", "Lack of raw material"], | |
"Step 5": ["Delay in Turnup", "Lack of raw material"], | |
"Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"], | |
"Step 7": ["Delay in sidewall stitching", "Lack of raw material"], | |
"Step 8": ["No person available to load Carcass", "No person available to collect tire"] | |
} | |
def get_step_info(step_number): | |
"""Returns detailed information about a manufacturing step.""" | |
step_details = { | |
1: { | |
"Name": "Bead Insertion", | |
"Standard Time": "4 seconds", | |
"Video_substeps_expected": { | |
"0-1 second": "Machine starts bead insertion process.", | |
"1-3 seconds": "Beads are aligned and positioned.", | |
"3-4 seconds": "Final adjustment and confirmation of bead placement." | |
} | |
}, | |
2: { | |
"Name": "Inner Liner Apply", | |
"Standard Time": "4 seconds", | |
"Video_substeps_expected": { | |
"0-1 second": "Machine applies the first layer of the liner.", | |
"1-3 seconds": "Technician checks alignment and adjusts if needed.", | |
"3-4 seconds": "Final inspection and confirmation." | |
} | |
}, | |
3: { | |
"Name": "Ply1 Apply", | |
"Standard Time": "4 seconds", | |
"Video_substeps_expected": { | |
"0-2 seconds": "First ply is loaded onto the machine.", | |
"2-4 seconds": "Technician inspects and adjusts ply placement." | |
} | |
}, | |
4: { | |
"Name": "Bead Set", | |
"Standard Time": "8 seconds", | |
"Video_substeps_expected": { | |
"0-3 seconds": "Bead is positioned and pre-set.", | |
"3-6 seconds": "Machine secures the bead in place.", | |
"6-8 seconds": "Technician confirms the bead alignment." | |
} | |
}, | |
5: { | |
"Name": "Turnup", | |
"Standard Time": "4 seconds", | |
"Video_substeps_expected": { | |
"0-2 seconds": "Turnup process begins with machine handling.", | |
"2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary." | |
} | |
}, | |
6: { | |
"Name": "Sidewall Apply", | |
"Standard Time": "14 seconds", | |
"Video_substeps_expected": { | |
"0-5 seconds": "Sidewall material is positioned by the machine.", | |
"5-10 seconds": "Technician checks for alignment and begins application.", | |
"10-14 seconds": "Final adjustments and confirmation of sidewall placement." | |
} | |
}, | |
7: { | |
"Name": "Sidewall Stitching", | |
"Standard Time": "5 seconds", | |
"Video_substeps_expected": { | |
"0-2 seconds": "Stitching process begins automatically.", | |
"2-4 seconds": "Technician inspects stitching for any irregularities.", | |
"4-5 seconds": "Machine completes stitching process." | |
} | |
}, | |
8: { | |
"Name": "Carcass Unload", | |
"Standard Time": "7 seconds", | |
"Video_substeps_expected": { | |
"0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine." | |
} | |
} | |
} | |
return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."}) | |
def load_video(video_data, strategy='chat'): | |
"""Loads and processes video data into a format suitable for model input.""" | |
bridge.set_bridge('torch') | |
if isinstance(video_data, str): | |
decord_vr = VideoReader(video_data, ctx=cpu(0)) | |
else: | |
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0)) | |
total_frames = len(decord_vr) | |
if total_frames < NUM_FRAMES: | |
raise ValueError("Uploaded video is too short for meaningful analysis.") | |
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))] | |
max_second = round(max(timestamps)) + 1 | |
frame_id_list = [] | |
for second in range(max_second): | |
closest_num = min(timestamps, key=lambda x: abs(x - second)) | |
index = timestamps.index(closest_num) | |
frame_id_list.append(index) | |
if len(frame_id_list) >= NUM_FRAMES: | |
break | |
video_data = decord_vr.get_batch(frame_id_list) | |
video_data = video_data.permute(3, 0, 1, 2) | |
return video_data | |
def load_model(): | |
"""Loads the pre-trained model and tokenizer with quantization configurations.""" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=TORCH_TYPE, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=TORCH_TYPE, | |
trust_remote_code=True, | |
quantization_config=quantization_config, | |
device_map="auto" | |
).eval() | |
return model, tokenizer | |
def predict(prompt, video_data, temperature, model, tokenizer): | |
"""Generates predictions based on the video and textual prompt.""" | |
try: | |
video = load_video(video_data, strategy='chat') | |
except ValueError as e: | |
return f"Error loading video: {str(e)}" | |
inputs = model.build_conversation_input_ids( | |
tokenizer=tokenizer, | |
query=prompt, | |
images=[video], | |
history=[], | |
template_version='chat' | |
) | |
inputs = { | |
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), | |
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], | |
} | |
gen_kwargs = { | |
"max_new_tokens": MAX_NEW_TOKENS, | |
"pad_token_id": tokenizer.pad_token_id, | |
"top_k": TOP_K, | |
"do_sample": False, | |
"top_p": TOP_P, | |
"temperature": temperature or DEFAULT_TEMPERATURE, | |
} | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **gen_kwargs) | |
outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
return f"Analysis Result:\n{response}" | |
def get_analysis_prompt(step_number): | |
"""Constructs the prompt for analyzing delay reasons based on the selected step.""" | |
step_info = get_step_info(step_number) | |
if "Error" in step_info: | |
return step_info["Error"] | |
step_name = step_info["Name"] | |
standard_time = step_info["Standard Time"] | |
substeps = step_info["Video_substeps_expected"] | |
delay_reasons = DELAY_REASONS.get(f"Step {step_number}", ["No specific reasons provided."]) | |
substeps_text = "\n".join([f"- {time}: {action}" for time, action in substeps.items()]) | |
reasons_text = "\n".join([f"- {reason}" for reason in delay_reasons]) | |
return f""" | |
You are an AI expert system analyzing manufacturing delays in tire production. Below are the details: | |
Step: {step_number} - {step_name} | |
Standard Time: {standard_time} | |
Substeps Expected in Video: | |
{substeps_text} | |
Potential Delay Reasons: | |
{reasons_text} | |
Task: Analyze the provided video to identify the delay reason. Use the following format: | |
1. **Selected Reason:** [Choose the most likely reason from the list above] | |
2. **Visual Evidence:** [Describe specific visual cues from the video that support your analysis.] | |
""" | |