Apollo_GenAI / app.py
VishalD1234's picture
Update app.py
3f60308 verified
raw
history blame
8.54 kB
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
# Configurable constants
NUM_FRAMES = 24 # Default number of frames to extract
MAX_NEW_TOKENS = 2048
TOP_K = 1
TOP_P = 0.1
DEFAULT_TEMPERATURE = 1.0
# Delay Reasons for Each Manufacturing Step
DELAY_REASONS = {
"Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
"Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
"Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
"Step 4": ["Delay in Bead set", "Lack of raw material"],
"Step 5": ["Delay in Turnup", "Lack of raw material"],
"Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
"Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
"Step 8": ["No person available to load Carcass", "No person available to collect tire"]
}
def get_step_info(step_number):
"""Returns detailed information about a manufacturing step."""
step_details = {
1: {
"Name": "Bead Insertion",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine starts bead insertion process.",
"1-3 seconds": "Beads are aligned and positioned.",
"3-4 seconds": "Final adjustment and confirmation of bead placement."
}
},
2: {
"Name": "Inner Liner Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine applies the first layer of the liner.",
"1-3 seconds": "Technician checks alignment and adjusts if needed.",
"3-4 seconds": "Final inspection and confirmation."
}
},
3: {
"Name": "Ply1 Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "First ply is loaded onto the machine.",
"2-4 seconds": "Technician inspects and adjusts ply placement."
}
},
4: {
"Name": "Bead Set",
"Standard Time": "8 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Bead is positioned and pre-set.",
"3-6 seconds": "Machine secures the bead in place.",
"6-8 seconds": "Technician confirms the bead alignment."
}
},
5: {
"Name": "Turnup",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Turnup process begins with machine handling.",
"2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
}
},
6: {
"Name": "Sidewall Apply",
"Standard Time": "14 seconds",
"Video_substeps_expected": {
"0-5 seconds": "Sidewall material is positioned by the machine.",
"5-10 seconds": "Technician checks for alignment and begins application.",
"10-14 seconds": "Final adjustments and confirmation of sidewall placement."
}
},
7: {
"Name": "Sidewall Stitching",
"Standard Time": "5 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Stitching process begins automatically.",
"2-4 seconds": "Technician inspects stitching for any irregularities.",
"4-5 seconds": "Machine completes stitching process."
}
},
8: {
"Name": "Carcass Unload",
"Standard Time": "7 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
}
}
}
return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
total_frames = len(decord_vr)
if total_frames < NUM_FRAMES:
raise ValueError("Uploaded video is too short for meaningful analysis.")
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
frame_id_list = []
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= NUM_FRAMES:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
try:
video = load_video(video_data, strategy='chat')
except ValueError as e:
return f"Error loading video: {str(e)}"
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": MAX_NEW_TOKENS,
"pad_token_id": tokenizer.pad_token_id,
"top_k": TOP_K,
"do_sample": False,
"top_p": TOP_P,
"temperature": temperature or DEFAULT_TEMPERATURE,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
return f"Analysis Result:\n{response}"
def get_analysis_prompt(step_number):
"""Constructs the prompt for analyzing delay reasons based on the selected step."""
step_info = get_step_info(step_number)
if "Error" in step_info:
return step_info["Error"]
step_name = step_info["Name"]
standard_time = step_info["Standard Time"]
substeps = step_info["Video_substeps_expected"]
delay_reasons = DELAY_REASONS.get(f"Step {step_number}", ["No specific reasons provided."])
substeps_text = "\n".join([f"- {time}: {action}" for time, action in substeps.items()])
reasons_text = "\n".join([f"- {reason}" for reason in delay_reasons])
return f"""
You are an AI expert system analyzing manufacturing delays in tire production. Below are the details:
Step: {step_number} - {step_name}
Standard Time: {standard_time}
Substeps Expected in Video:
{substeps_text}
Potential Delay Reasons:
{reasons_text}
Task: Analyze the provided video to identify the delay reason. Use the following format:
1. **Selected Reason:** [Choose the most likely reason from the list above]
2. **Visual Evidence:** [Describe specific visual cues from the video that support your analysis.]
"""