File size: 8,544 Bytes
077ae35
 
 
 
 
 
 
 
 
 
 
 
3f60308
 
 
 
 
 
 
077ae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2eaa25
077ae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7152bcd
077ae35
 
 
 
 
 
 
 
3f60308
077ae35
 
 
 
 
 
3f60308
7152bcd
 
077ae35
 
 
7152bcd
077ae35
 
 
 
3f60308
077ae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f60308
 
 
 
077ae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f60308
7152bcd
3f60308
077ae35
3f60308
 
077ae35
 
 
 
 
7152bcd
077ae35
7152bcd
077ae35
 
 
 
 
 
 
 
 
 
7152bcd
 
077ae35
7152bcd
 
077ae35
7152bcd
 
 
 
 
 
 
 
 
 
 
 
3f60308
c33b13b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig

MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16

# Configurable constants
NUM_FRAMES = 24  # Default number of frames to extract
MAX_NEW_TOKENS = 2048
TOP_K = 1
TOP_P = 0.1
DEFAULT_TEMPERATURE = 1.0

# Delay Reasons for Each Manufacturing Step
DELAY_REASONS = {
    "Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
    "Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
    "Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
    "Step 4": ["Delay in Bead set", "Lack of raw material"],
    "Step 5": ["Delay in Turnup", "Lack of raw material"],
    "Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
    "Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
    "Step 8": ["No person available to load Carcass", "No person available to collect tire"]
}

def get_step_info(step_number):
    """Returns detailed information about a manufacturing step."""
    step_details = {
        1: {
            "Name": "Bead Insertion",
            "Standard Time": "4 seconds",
            "Video_substeps_expected": {
                "0-1 second": "Machine starts bead insertion process.",
                "1-3 seconds": "Beads are aligned and positioned.",
                "3-4 seconds": "Final adjustment and confirmation of bead placement."
            }
        },
        2: {
            "Name": "Inner Liner Apply",
            "Standard Time": "4 seconds",
            "Video_substeps_expected": {
                "0-1 second": "Machine applies the first layer of the liner.",
                "1-3 seconds": "Technician checks alignment and adjusts if needed.",
                "3-4 seconds": "Final inspection and confirmation."
            }
        },
        3: {
            "Name": "Ply1 Apply",
            "Standard Time": "4 seconds",
            "Video_substeps_expected": {
                "0-2 seconds": "First ply is loaded onto the machine.",
                "2-4 seconds": "Technician inspects and adjusts ply placement."
            }
        },
        4: {
            "Name": "Bead Set",
            "Standard Time": "8 seconds",
            "Video_substeps_expected": {
                "0-3 seconds": "Bead is positioned and pre-set.",
                "3-6 seconds": "Machine secures the bead in place.",
                "6-8 seconds": "Technician confirms the bead alignment."
            }
        },
        5: {
            "Name": "Turnup",
            "Standard Time": "4 seconds",
            "Video_substeps_expected": {
                "0-2 seconds": "Turnup process begins with machine handling.",
                "2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
            }
        },
        6: {
            "Name": "Sidewall Apply",
            "Standard Time": "14 seconds",
            "Video_substeps_expected": {
                "0-5 seconds": "Sidewall material is positioned by the machine.",
                "5-10 seconds": "Technician checks for alignment and begins application.",
                "10-14 seconds": "Final adjustments and confirmation of sidewall placement."
            }
        },
        7: {
            "Name": "Sidewall Stitching",
            "Standard Time": "5 seconds",
            "Video_substeps_expected": {
                "0-2 seconds": "Stitching process begins automatically.",
                "2-4 seconds": "Technician inspects stitching for any irregularities.",
                "4-5 seconds": "Machine completes stitching process."
            }
        },
        8: {
            "Name": "Carcass Unload",
            "Standard Time": "7 seconds",
            "Video_substeps_expected": {
                "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
            }
        }
    }
    
    return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})

def load_video(video_data, strategy='chat'):
    """Loads and processes video data into a format suitable for model input."""
    bridge.set_bridge('torch')

    if isinstance(video_data, str): 
        decord_vr = VideoReader(video_data, ctx=cpu(0))
    else:  
        decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
    
    total_frames = len(decord_vr)
    if total_frames < NUM_FRAMES:
        raise ValueError("Uploaded video is too short for meaningful analysis.")
    
    timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
    max_second = round(max(timestamps)) + 1
    
    frame_id_list = []
    for second in range(max_second):
        closest_num = min(timestamps, key=lambda x: abs(x - second))
        index = timestamps.index(closest_num)
        frame_id_list.append(index)
        if len(frame_id_list) >= NUM_FRAMES:
            break

    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data

def load_model():
    """Loads the pre-trained model and tokenizer with quantization configurations."""
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=TORCH_TYPE,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4"
    )
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=quantization_config,
        device_map="auto"
    ).eval()
    
    return model, tokenizer

def predict(prompt, video_data, temperature, model, tokenizer):
    """Generates predictions based on the video and textual prompt."""
    try:
        video = load_video(video_data, strategy='chat')
    except ValueError as e:
        return f"Error loading video: {str(e)}"
    
    inputs = model.build_conversation_input_ids(
        tokenizer=tokenizer,
        query=prompt,
        images=[video],
        history=[],
        template_version='chat'
    )
    
    inputs = {
        'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
    }
    
    gen_kwargs = {
        "max_new_tokens": MAX_NEW_TOKENS,
        "pad_token_id": tokenizer.pad_token_id,
        "top_k": TOP_K,
        "do_sample": False,
        "top_p": TOP_P,
        "temperature": temperature or DEFAULT_TEMPERATURE,
    }
    
    with torch.no_grad():
        outputs = model.generate(**inputs, **gen_kwargs)
        outputs = outputs[:, inputs['input_ids'].shape[1]:]
        response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
    
    return f"Analysis Result:\n{response}"

def get_analysis_prompt(step_number):
    """Constructs the prompt for analyzing delay reasons based on the selected step."""
    step_info = get_step_info(step_number)
    
    if "Error" in step_info:
        return step_info["Error"]
    
    step_name = step_info["Name"]
    standard_time = step_info["Standard Time"]
    substeps = step_info["Video_substeps_expected"]
    delay_reasons = DELAY_REASONS.get(f"Step {step_number}", ["No specific reasons provided."])

    substeps_text = "\n".join([f"- {time}: {action}" for time, action in substeps.items()])
    reasons_text = "\n".join([f"- {reason}" for reason in delay_reasons])
    
    return f"""
You are an AI expert system analyzing manufacturing delays in tire production. Below are the details:
Step: {step_number} - {step_name}
Standard Time: {standard_time}
Substeps Expected in Video:
{substeps_text}

Potential Delay Reasons:
{reasons_text}

Task: Analyze the provided video to identify the delay reason. Use the following format:
1. **Selected Reason:** [Choose the most likely reason from the list above]
2. **Visual Evidence:** [Describe specific visual cues from the video that support your analysis.]
"""