VishalD1234 commited on
Commit
7152bcd
·
verified ·
1 Parent(s): cea180a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -109
app.py CHANGED
@@ -91,18 +91,12 @@ def get_step_info(step_number):
91
  "Standard Time": "7 seconds",
92
  "Video_substeps_expected": {
93
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
94
- },
95
- "Potential_Delay_reasons": [
96
- "Person not available in time(in 3 sec) to remove carcass.",
97
- "Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
98
- ]
99
  }
100
  }
101
 
102
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
103
 
104
-
105
-
106
  def load_video(video_data, strategy='chat'):
107
  """Loads and processes video data into a format suitable for model input."""
108
  bridge.set_bridge('torch')
@@ -113,11 +107,14 @@ def load_video(video_data, strategy='chat'):
113
  else:
114
  decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
115
 
116
- frame_id_list = []
117
  total_frames = len(decord_vr)
 
 
 
118
  timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
119
  max_second = round(max(timestamps)) + 1
120
 
 
121
  for second in range(max_second):
122
  closest_num = min(timestamps, key=lambda x: abs(x - second))
123
  index = timestamps.index(closest_num)
@@ -170,19 +167,19 @@ def predict(prompt, video_data, temperature, model, tokenizer):
170
 
171
  gen_kwargs = {
172
  "max_new_tokens": 2048,
173
- "pad_token_id": 128002,
174
  "top_k": 1,
175
  "do_sample": False,
176
  "top_p": 0.1,
177
- "temperature": temperature,
178
  }
179
 
180
  with torch.no_grad():
181
  outputs = model.generate(**inputs, **gen_kwargs)
182
  outputs = outputs[:, inputs['input_ids'].shape[1]:]
183
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
184
 
185
- return response
186
 
187
  def get_analysis_prompt(step_number):
188
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
@@ -193,102 +190,22 @@ def get_analysis_prompt(step_number):
193
 
194
  step_name = step_info["Name"]
195
  standard_time = step_info["Standard Time"]
196
- analysis = step_info["Analysis"]
197
-
198
- return f"""
199
- You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your role is to accurately classify delay reasons based on visual evidence from production line footage.
200
- Task Context:
201
- You are analyzing video footage from Step {step_number} of a tire manufacturing process where a delay has been detected. The step is called {step_name}, and its standard time is {standard_time}.
202
- Required Analysis:
203
- Carefully observe the video for visual cues indicating production interruption.
204
- - If no person is visible in any of the frames, the reason probably might be due to their absence.
205
- - If a person is visible in the video and is observed touching and modifying the layers of the tire, it indicates an issue with tire patching, and the person might be repairing it.
206
- - Compare observed evidence against the following possible delay reasons:
207
- - {analysis}
208
-
209
- Following are the subactivities needs to happen in this step.
210
-
211
- {get_step_info(step_number)}
212
 
213
- Please provide your output in the following format:
214
- Output_Examples = {
215
- ["Delay in Bead Insertion", "Lack of raw material"],
216
- ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
217
- ["Manual Adjustment in Ply1 Apply", "Technician repairing defective Tire Sections"],
218
- ["Delay in Bead Set", "Lack of raw material"],
219
- ["Delay in Turnup", "Lack of raw material"],
220
- ["Person Repairing Sidewall", "Person rebuilding defective Tire Sections"],
221
- ["Delay in Sidewall Stitching", "Lack of raw material"],
222
- ["No person available to load Carcass", "No person available to collect tire"]
223
- }
224
-
225
- 1. **Selected Reason:** [State the most likely reason from the given options]
226
- 2. **Visual Evidence:** [Describe specific visual cues that support your selection]
227
- 3. **Reasoning:** [Explain why this reason best matches the observed evidence]
228
- 4. **Alternative Analysis:** [Brief explanation of why other possible reasons are less likely]
229
-
230
- Important: Base your analysis solely on visual evidence from the video. Focus on concrete, observable details rather than assumptions. Clearly state if no person or specific activity is observed.
231
- """
232
-
233
-
234
-
235
- model, tokenizer = load_model()
236
-
237
- def inference(video, step_number):
238
- """Analyzes video to predict possible issues based on the manufacturing step."""
239
- try:
240
- if not video:
241
- return "Please upload a video first."
242
-
243
- prompt = get_analysis_prompt(step_number)
244
- temperature = 0.3
245
- response = predict(prompt, video, temperature, model, tokenizer)
246
-
247
- return response
248
- except Exception as e:
249
- return f"An error occurred during analysis: {str(e)}"
250
-
251
- def create_interface():
252
- """Creates the Gradio interface for the Manufacturing Analysis System."""
253
- with gr.Blocks() as demo:
254
- gr.Markdown("""
255
- # Manufacturing Analysis System
256
- Upload a video of the manufacturing step and select the step number.
257
- The system will analyze the video and provide observations.
258
- """)
259
-
260
- with gr.Row():
261
- with gr.Column():
262
- video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
263
- step_number = gr.Dropdown(
264
- choices=[f"Step {i}" for i in range(1, 9)],
265
- label="Manufacturing Step"
266
- )
267
- analyze_btn = gr.Button("Analyze", variant="primary")
268
-
269
- with gr.Column():
270
- output = gr.Textbox(label="Analysis Result", lines=10)
271
-
272
- gr.Examples(
273
- examples=[
274
- ["7838_step2_2_eval.mp4", "Step 2"],
275
- ["7838_step6_2_eval.mp4", "Step 6"],
276
- ["7838_step8_1_eval.mp4", "Step 8"],
277
- ["7993_step6_3_eval.mp4", "Step 6"],
278
- ["7993_step8_3_eval.mp4", "Step 8"]
279
- ],
280
- inputs=[video, step_number],
281
- cache_examples=False
282
- )
283
-
284
- analyze_btn.click(
285
- fn=inference,
286
- inputs=[video, step_number],
287
- outputs=[output]
288
- )
289
 
290
- return demo
291
-
292
- if __name__ == "__main__":
293
- demo = create_interface()
294
- demo.queue().launch(share=True)
 
 
 
 
 
 
 
 
 
91
  "Standard Time": "7 seconds",
92
  "Video_substeps_expected": {
93
  "0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
94
+ }
 
 
 
 
95
  }
96
  }
97
 
98
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
99
 
 
 
100
  def load_video(video_data, strategy='chat'):
101
  """Loads and processes video data into a format suitable for model input."""
102
  bridge.set_bridge('torch')
 
107
  else:
108
  decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
109
 
 
110
  total_frames = len(decord_vr)
111
+ if total_frames < num_frames:
112
+ raise ValueError("Uploaded video is too short for meaningful analysis.")
113
+
114
  timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
115
  max_second = round(max(timestamps)) + 1
116
 
117
+ frame_id_list = []
118
  for second in range(max_second):
119
  closest_num = min(timestamps, key=lambda x: abs(x - second))
120
  index = timestamps.index(closest_num)
 
167
 
168
  gen_kwargs = {
169
  "max_new_tokens": 2048,
170
+ "pad_token_id": tokenizer.pad_token_id,
171
  "top_k": 1,
172
  "do_sample": False,
173
  "top_p": 0.1,
174
+ "temperature": 0.3,
175
  }
176
 
177
  with torch.no_grad():
178
  outputs = model.generate(**inputs, **gen_kwargs)
179
  outputs = outputs[:, inputs['input_ids'].shape[1]:]
180
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
181
 
182
+ return f"Analysis Result:\n{response}"
183
 
184
  def get_analysis_prompt(step_number):
185
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
 
190
 
191
  step_name = step_info["Name"]
192
  standard_time = step_info["Standard Time"]
193
+ substeps = step_info["Video_substeps_expected"]
194
+ delay_reasons = DELAY_REASONS.get(f"Step {step_number}", ["No specific reasons provided."])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
+ substeps_text = "\n".join([f"- {time}: {action}" for time, action in substeps.items()])
197
+ reasons_text = "\n".join([f"- {reason}" for reason in delay_reasons])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
+ return f"""
200
+ You are an AI expert system analyzing manufacturing delays in tire production. Below are the details:
201
+ Step: {step_number} - {step_name}
202
+ Standard Time: {standard_time}
203
+ Substeps Expected in Video:
204
+ {substeps_text}
205
+
206
+ Potential Delay Reasons:
207
+ {reasons_text}
208
+
209
+ Task: Analyze the provided video to identify the delay reason. Use the following format:
210
+ 1. **Selected Reason:** [Choose the most likely reason from the list above]
211
+ 2. **Visual Evidence:** [Describe specific visual cues from the