Spaces:
Sleeping
Sleeping
File size: 14,733 Bytes
4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 72dbfd7 022cccc 72dbfd7 022cccc 72dbfd7 022cccc 72dbfd7 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b 022cccc 4c8737b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import gradio as gr
import torch
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
from mammal.keys import *
from mammal.model import Mammal
from abc import ABC, abstractmethod
class MammalObjectBroker():
def __init__(self, model_path: str, name:str= None, task_list: list[str]=None) -> None:
self.model_path = model_path
if name is None:
name = model_path
self.name = name
if task_list is not None:
self.tasks=task_list
else:
self.task = []
self._model = None
self._tokenizer_op = None
@property
def model(self)-> Mammal:
if self._model is None:
self._model = Mammal.from_pretrained(self.model_path)
self._model.eval()
return self._model
@property
def tokenizer_op(self):
if self._tokenizer_op is None:
self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
return self._tokenizer_op
class MammalTask(ABC):
def __init__(self, name:str) -> None:
self.name = name
self.description = None
self._demo = None
# @abstractmethod
# def _generate_prompt(self, **kwargs) -> str:
# """Formatting prompt to match pre-training syntax
# Args:
# prot1 (_type_): _description_
# prot2 (_type_): _description_
# Raises:
# No: _description_
# """
# raise NotImplementedError()
@abstractmethod
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker) -> dict:
"""Formatting prompt to match pre-training syntax
Args:
prompt (str): _description_
Returns:
dict: sample_dict for feeding into model
"""
raise NotImplementedError()
# @abstractmethod
def run_model(self, sample_dict, model:Mammal):
raise NotImplementedError()
def create_demo(self, model_name_widget: gr.component) -> gr.Group:
"""create an gradio demo group
Args:
model_name_widgit (gr.Component): widget holding the model name to use. This is needed to create
gradio actions with the current model name as an input
Raises:
NotImplementedError: _description_
"""
raise NotImplementedError()
def demo(self,model_name_widgit:gr.component=None):
if self._demo is None:
model_name_widget:gr.component
self._demo = self.create_demo(model_name_widget=model_name_widgit)
return self._demo
@abstractmethod
def decode_output(self,batch_dict, model:Mammal):
raise NotImplementedError()
#self._setup()
# def _setup(self):
# pass
all_tasks = dict()
all_models= dict()
class PpiTask(MammalTask):
def __init__(self):
super().__init__(name="Protein-Protein Interaction")
self.description = "Protein-Protein Interaction (PPI)"
self.examples = {
"protein_calmodulin": "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK",
"protein_calcineurin": "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ",
}
self.markup_text = """
# Mammal based {self.description} demonstration
Given two protein sequences, estimate if the proteins interact or not."""
@staticmethod
def positive_token_id(model_holder: MammalObjectBroker):
"""token for positive binding
Args:
model (MammalTrainedModel): model holding tokenizer
Returns:
int: id of positive binding token
"""
return model_holder.tokenizer_op.get_token_id("<1>")
def generate_prompt(self, prot1, prot2):
"""Formatting prompt to match pre-training syntax
Args:
prot1 (str): sequance of protein number 1
prot2 (str): sequance of protein number 2
Returns:
str: prompt
"""
prompt = f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"\
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
"<SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END>"\
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
"<SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
return prompt
def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker):
# Create and load sample
sample_dict = dict()
prompt = self.generate_prompt(*sample_inputs)
sample_dict[ENCODER_INPUTS_STR] = prompt
# Tokenize
sample_dict = model_holder.tokenizer_op(
sample_dict=sample_dict,
key_in=ENCODER_INPUTS_STR,
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
)
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
sample_dict[ENCODER_INPUTS_TOKENS]
)
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
sample_dict[ENCODER_INPUTS_ATTENTION_MASK]
)
return sample_dict
def run_model(self, sample_dict, model: Mammal):
# Generate Prediction
batch_dict = model.generate(
[sample_dict],
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=5,
)
return batch_dict
def decode_output(self,batch_dict, model_holder:MammalObjectBroker):
# Get output
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
score = batch_dict["model.out.scores"][0][1][self.positive_token_id(model_holder)].item()
return generated_output, score
def create_and_run_prompt(self,model_name,protein1, protein2):
model_holder = all_models[model_name]
sample_inputs = {"prot1":protein1,
"prot2":protein2
}
sample_dict = self.crate_sample_dict(sample_inputs=sample_inputs, model_holder=model_holder)
prompt = sample_dict[ENCODER_INPUTS_STR]
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
return res
def create_demo(self,model_name_widget:gr.component):
# """
# ### Using the model from
# ```{model} ```
# """
with gr.Group() as demo:
gr.Markdown(self.markup_text)
with gr.Row():
prot1 = gr.Textbox(
label="Protein 1 sequence",
# info="standard",
interactive=True,
lines=3,
value=self.examples["protein_calmodulin"],
)
prot2 = gr.Textbox(
label="Protein 2 sequence",
# info="standard",
interactive=True,
lines=3,
value=self.examples["protein_calcineurin"],
)
with gr.Row():
run_mammal: gr.Button = gr.Button(
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
)
with gr.Row():
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
with gr.Row():
decoded = gr.Textbox(label="Mammal output")
run_mammal.click(
fn=self.create_and_run_prompt,
inputs=[model_name_widget, prot1, prot2],
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
)
with gr.Row():
gr.Markdown(
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
)
demo.visible = False
return demo
ppi_task = PpiTask()
all_tasks[ppi_task.name]=ppi_task
class DtiTask(MammalTask):
def __init__(self):
super().__init__(name="Drug-Target Binding Affinity")
self.description = "Drug-Target Binding Affinity (tdi)"
self.examples = {
"target_seq": "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC",
"drug_seq":"CC(=O)NCCC1=CNc2c1cc(OC)cc2"
}
self.markup_text = """
# Mammal based Target-Drug binding affinity demonstration
Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
"""
def crate_sample_dict(self, sample_inputs:dict, model_holder:MammalObjectBroker):
"""convert sample_inputs to sample_dict including creating a proper prompt
Args:
sample_inputs (dict): dictionary containing the inputs to the model
model_holder (MammalObjectBroker): model holder
Returns:
dict: sample_dict for feeding into model
"""
sample_dict = dict(sample_inputs)
sample_dict = DtiBindingdbKdTask.data_preprocessing(
sample_dict=sample_dict,
tokenizer_op=model_holder.tokenizer_op,
target_sequence_key="target_seq",
drug_sequence_key="drug_seq",
norm_y_mean=None,
norm_y_std=None,
device=model_holder.model.device,
)
return sample_dict
def run_model(self, sample_dict, model: Mammal):
# Generate Prediction
batch_dict = model.forward_encoder_only([sample_dict])
return batch_dict
def decode_output(self,batch_dict, model_holder):
# Get output
batch_dict = DtiBindingdbKdTask.process_model_output(
batch_dict,
scalars_preds_processed_key="model.out.dti_bindingdb_kd",
norm_y_mean=5.79384684128215,
norm_y_std=1.33808027428196,
)
ans = (
"model.out.dti_bindingdb_kd",
float(batch_dict["model.out.dti_bindingdb_kd"][0]),
)
return ans
def create_and_run_prompt(self,model_name,target_seq, drug_seq):
model_holder = all_models[model_name]
inputs = {
"target_seq": target_seq,
"drug_seq": drug_seq,
}
sample_dict = self.crate_sample_dict(sample_inputs=inputs, model_holder=model_holder)
prompt=sample_dict[ENCODER_INPUTS_STR]
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
return res
def create_demo(self,model_name_widget):
# """
# ### Using the model from
# ```{model} ```
# """
with gr.Group() as demo:
gr.Markdown(self.markup_text)
with gr.Row():
target_textbox = gr.Textbox(
label="target sequence",
# info="standard",
interactive=True,
lines=3,
value=self.examples["target_seq"],
)
drug_textbox = gr.Textbox(
label="Drug sequance (in SMILES)",
# info="standard",
interactive=True,
lines=3,
value=self.examples["drug_seq"],
)
with gr.Row():
run_mammal = gr.Button(
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
)
with gr.Row():
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
with gr.Row():
decoded = gr.Textbox(label="Mammal output key")
run_mammal.click(
fn=self.create_and_run_prompt,
inputs=[model_name_widget, target_textbox, drug_textbox],
outputs=[prompt_box, decoded, gr.Number(label="binding affinity")],
)
demo.visible = False
return demo
tdi_task = DtiTask()
all_tasks[tdi_task.name]=tdi_task
ppi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name])
all_models[ppi_model.name]=ppi_model
tdi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", task_list=[tdi_task.name])
all_models[tdi_model.name]=tdi_model
def create_application():
def task_change(value):
visibility = [gr.update(visible=(task==value)) for task in all_tasks.keys()]
# all_tasks[task].demo().visible =
choices=[model_name for model_name, model in all_models.items() if value in model.tasks]
if choices:
return (gr.update(choices=choices, value=choices[0]),*visibility)
else:
return (gr.skip,*visibility)
# return model_name_dropdown
with gr.Blocks() as application:
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()))
task_dropdown.interactive = True
model_name_dropdown = gr.Dropdown(choices=[model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks], interactive=True)
ppi_demo = all_tasks[ppi_task.name].demo(model_name_widgit = model_name_dropdown)
# ppi_demo.visible = True
dtb_demo = all_tasks[tdi_task.name].demo(model_name_widgit = model_name_dropdown)
task_dropdown.change(task_change,inputs=[task_dropdown],outputs=[model_name_dropdown]+[all_tasks[task].demo() for task in all_tasks])
# def set_demo_vis(main_text):
# main_text=main_text
# print(f"main text is {main_text}")
# return gr.Group(visible=True)
# #return gr.Group(visible=(main_text == "PPI"))
# # , gr.Group( visible=(main_text == "DTI") )
# task_dropdown.change(
# set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
# )
return application
full_demo=None
def main():
global full_demo
full_demo = create_application()
full_demo.launch(show_error=True, share=False)
if __name__ == "__main__":
main()
|