Spaces:
Sleeping
Sleeping
Commit
·
4c8737b
1
Parent(s):
83ccd79
new_app now works for ppi
Browse files- new_app.py +297 -0
new_app.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
4 |
+
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
|
5 |
+
from mammal.keys import *
|
6 |
+
from mammal.model import Mammal
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
class MammalObjectBroker():
|
9 |
+
def __init__(self, model_path: str, name:str= None, task_list: list[str]=None) -> None:
|
10 |
+
self.model_path = model_path
|
11 |
+
if name is None:
|
12 |
+
name = model_path
|
13 |
+
self.name = name
|
14 |
+
|
15 |
+
if task_list is not None:
|
16 |
+
self.tasks=task_list
|
17 |
+
else:
|
18 |
+
self.task = []
|
19 |
+
self._model = None
|
20 |
+
self._tokenizer_op = None
|
21 |
+
|
22 |
+
|
23 |
+
@property
|
24 |
+
def model(self)-> Mammal:
|
25 |
+
if self._model is None:
|
26 |
+
self._model = Mammal.from_pretrained(self.model_path)
|
27 |
+
self._model.eval()
|
28 |
+
return self._model
|
29 |
+
|
30 |
+
@property
|
31 |
+
def tokenizer_op(self):
|
32 |
+
if self._tokenizer_op is None:
|
33 |
+
self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
|
34 |
+
return self._tokenizer_op
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
class MammalTask(ABC):
|
41 |
+
def __init__(self, name:str) -> None:
|
42 |
+
self.name = name
|
43 |
+
self.description = None
|
44 |
+
self._demo = None
|
45 |
+
|
46 |
+
@abstractmethod
|
47 |
+
def generate_prompt(self, **kwargs) -> str:
|
48 |
+
"""Formatting prompt to match pre-training syntax
|
49 |
+
|
50 |
+
Args:
|
51 |
+
prot1 (_type_): _description_
|
52 |
+
prot2 (_type_): _description_
|
53 |
+
|
54 |
+
Raises:
|
55 |
+
No: _description_
|
56 |
+
"""
|
57 |
+
raise NotImplementedError()
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
def crate_sample_dict(self, prompt: str, **kwargs) -> dict:
|
61 |
+
"""Formatting prompt to match pre-training syntax
|
62 |
+
|
63 |
+
Args:
|
64 |
+
prompt (str): _description_
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
dict: sample_dict for feeding into model
|
68 |
+
"""
|
69 |
+
raise NotImplementedError()
|
70 |
+
|
71 |
+
# @abstractmethod
|
72 |
+
def run_model(self, sample_dict, model:Mammal):
|
73 |
+
raise NotImplementedError()
|
74 |
+
|
75 |
+
@abstractmethod
|
76 |
+
def create_demo(self, model_name_dropdown):
|
77 |
+
"""create an gradio demo group
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
_type_: _description_
|
81 |
+
"""
|
82 |
+
raise NotImplementedError()
|
83 |
+
|
84 |
+
|
85 |
+
def demo(self,model_name_dropdown=None):
|
86 |
+
if self._demo is None:
|
87 |
+
self._demo = self.create_demo(model_name_dropdown=model_name_dropdown)
|
88 |
+
return self._demo
|
89 |
+
|
90 |
+
@abstractmethod
|
91 |
+
def decode_output(self,batch_dict, model:Mammal):
|
92 |
+
raise NotImplementedError()
|
93 |
+
|
94 |
+
#self._setup()
|
95 |
+
|
96 |
+
# def _setup(self):
|
97 |
+
# pass
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
all_tasks = dict()
|
102 |
+
all_models= dict()
|
103 |
+
|
104 |
+
class PpiTask(MammalTask):
|
105 |
+
def __init__(self):
|
106 |
+
super().__init__(name="PPI")
|
107 |
+
self.description = "Protein-Protein Interaction (PPI)"
|
108 |
+
self.examples = {
|
109 |
+
"protein_calmodulin": "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK",
|
110 |
+
"protein_calcineurin": "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ",
|
111 |
+
}
|
112 |
+
self.markup_text = """
|
113 |
+
# Mammal based {self.description} demonstration
|
114 |
+
|
115 |
+
Given two protein sequences, estimate if the proteins interact or not."""
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def positive_token_id(model_holder: MammalObjectBroker):
|
121 |
+
"""token for positive binding
|
122 |
+
|
123 |
+
Args:
|
124 |
+
model (MammalTrainedModel): model holding tokenizer
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
int: id of positive binding token
|
128 |
+
"""
|
129 |
+
return model_holder.tokenizer_op.get_token_id("<1>")
|
130 |
+
|
131 |
+
def generate_prompt(self, prot1, prot2):
|
132 |
+
"""Formatting prompt to match pre-training syntax
|
133 |
+
|
134 |
+
Args:
|
135 |
+
prot1 (str): sequance of protein number 1
|
136 |
+
prot2 (str): sequance of protein number 2
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
str: prompt
|
140 |
+
"""
|
141 |
+
prompt = "<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"\
|
142 |
+
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
143 |
+
f"<SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END>"\
|
144 |
+
"<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
|
145 |
+
f"<SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
146 |
+
return prompt
|
147 |
+
|
148 |
+
|
149 |
+
def crate_sample_dict(self,prompt: str, model_holder:MammalObjectBroker):
|
150 |
+
# Create and load sample
|
151 |
+
sample_dict = dict()
|
152 |
+
sample_dict[ENCODER_INPUTS_STR] = prompt
|
153 |
+
|
154 |
+
# Tokenize
|
155 |
+
sample_dict = model_holder.tokenizer_op(
|
156 |
+
sample_dict=sample_dict,
|
157 |
+
key_in=ENCODER_INPUTS_STR,
|
158 |
+
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
159 |
+
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
160 |
+
)
|
161 |
+
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
162 |
+
sample_dict[ENCODER_INPUTS_TOKENS]
|
163 |
+
)
|
164 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
|
165 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK]
|
166 |
+
)
|
167 |
+
return sample_dict
|
168 |
+
|
169 |
+
def run_model(self, sample_dict, model: Mammal):
|
170 |
+
# Generate Prediction
|
171 |
+
batch_dict = model.generate(
|
172 |
+
[sample_dict],
|
173 |
+
output_scores=True,
|
174 |
+
return_dict_in_generate=True,
|
175 |
+
max_new_tokens=5,
|
176 |
+
)
|
177 |
+
return batch_dict
|
178 |
+
|
179 |
+
def decode_output(self,batch_dict, model_holder):
|
180 |
+
|
181 |
+
# Get output
|
182 |
+
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
183 |
+
score = batch_dict["model.out.scores"][0][1][self.positive_token_id(model_holder)].item()
|
184 |
+
|
185 |
+
return generated_output, score
|
186 |
+
|
187 |
+
|
188 |
+
def create_and_run_prompt(self,model_name,protein1, protein2):
|
189 |
+
model_holder = all_models[model_name]
|
190 |
+
prompt = self.generate_prompt(protein1, protein2)
|
191 |
+
sample_dict = self.crate_sample_dict(prompt=prompt, model_holder=model_holder)
|
192 |
+
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
|
193 |
+
res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
|
194 |
+
return res
|
195 |
+
|
196 |
+
|
197 |
+
def create_demo(self,model_name_dropdown):
|
198 |
+
|
199 |
+
# """
|
200 |
+
# ### Using the model from
|
201 |
+
|
202 |
+
# ```{model} ```
|
203 |
+
# """
|
204 |
+
with gr.Group() as demo:
|
205 |
+
gr.Markdown(self.markup_text)
|
206 |
+
with gr.Row():
|
207 |
+
prot1 = gr.Textbox(
|
208 |
+
label="Protein 1 sequence",
|
209 |
+
# info="standard",
|
210 |
+
interactive=True,
|
211 |
+
lines=3,
|
212 |
+
value=self.examples["protein_calmodulin"],
|
213 |
+
)
|
214 |
+
prot2 = gr.Textbox(
|
215 |
+
label="Protein 2 sequence",
|
216 |
+
# info="standard",
|
217 |
+
interactive=True,
|
218 |
+
lines=3,
|
219 |
+
value=self.examples["protein_calcineurin"],
|
220 |
+
)
|
221 |
+
with gr.Row():
|
222 |
+
run_mammal = gr.Button(
|
223 |
+
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
224 |
+
)
|
225 |
+
with gr.Row():
|
226 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
227 |
+
|
228 |
+
with gr.Row():
|
229 |
+
decoded = gr.Textbox(label="Mammal output")
|
230 |
+
run_mammal.click(
|
231 |
+
fn=self.create_and_run_prompt,
|
232 |
+
inputs=[model_name_dropdown, prot1, prot2],
|
233 |
+
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
234 |
+
)
|
235 |
+
with gr.Row():
|
236 |
+
gr.Markdown(
|
237 |
+
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
238 |
+
)
|
239 |
+
demo.visible = True
|
240 |
+
return demo
|
241 |
+
|
242 |
+
ppi_task = PpiTask()
|
243 |
+
all_tasks[ppi_task.name]=ppi_task
|
244 |
+
|
245 |
+
ppi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=["PPI"])
|
246 |
+
|
247 |
+
all_models[ppi_model.name]=ppi_model
|
248 |
+
# tdi_model = MammalTrainedModel(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd") TODO: ## task list still empty
|
249 |
+
# all_models.append(tdi_model)
|
250 |
+
|
251 |
+
|
252 |
+
def create_application():
|
253 |
+
def task_change(value):
|
254 |
+
choices=[model_name for model_name, model in all_models.items() if value in model.tasks]
|
255 |
+
if choices:
|
256 |
+
return gr.update(choices=choices, value=choices[0])
|
257 |
+
else:
|
258 |
+
return
|
259 |
+
# return model_name_dropdown
|
260 |
+
|
261 |
+
|
262 |
+
with gr.Blocks() as demo:
|
263 |
+
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()))
|
264 |
+
task_dropdown.interactive = True
|
265 |
+
model_name_dropdown = gr.Dropdown(choices=[model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks], interactive=True)
|
266 |
+
task_dropdown.change(task_change,inputs=[task_dropdown],outputs=[model_name_dropdown])
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
ppi_demo = all_tasks["PPI"].demo(model_name_dropdown = model_name_dropdown)
|
273 |
+
ppi_demo.visible = True
|
274 |
+
# dtb_demo = create_tdb_demo()
|
275 |
+
|
276 |
+
def set_ppi_vis(main_text):
|
277 |
+
main_text=main_text
|
278 |
+
print(f"main text is {main_text}")
|
279 |
+
return gr.Group(visible=True)
|
280 |
+
#return gr.Group(visible=(main_text == "PPI"))
|
281 |
+
# , gr.Group( visible=(main_text == "DTI") )
|
282 |
+
|
283 |
+
task_dropdown.change(
|
284 |
+
set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
|
285 |
+
)
|
286 |
+
return demo
|
287 |
+
|
288 |
+
full_demo=None
|
289 |
+
def main():
|
290 |
+
global full_demo
|
291 |
+
full_demo = create_application()
|
292 |
+
full_demo.launch(show_error=True, share=False)
|
293 |
+
|
294 |
+
|
295 |
+
if __name__ == "__main__":
|
296 |
+
main()
|
297 |
+
|