File size: 3,033 Bytes
9bdd97c f57e36f 9bdd97c 161720b 9bdd97c 161720b 9bdd97c 161720b 9bdd97c f57e36f 161720b f57e36f 161720b f57e36f fcd94e3 161720b f57e36f 161720b f57e36f 161720b fcd94e3 9bdd97c 161720b 9bdd97c fcd94e3 9bdd97c ed7463d 161720b ed7463d 7479a3a fcd94e3 7479a3a 161720b 7479a3a 161720b 7479a3a 161720b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
#!/usr/bin/env python
import functools
import os
import pathlib
import sys
import tarfile
import gradio as gr
import huggingface_hub
import PIL.Image
import torch
import torchvision
sys.path.insert(0, "bizarre-pose-estimator")
from _util.twodee_v0 import I as ImageWrapper
DESCRIPTION = "# [ShuhongChen/bizarre-pose-estimator (tagger)](https://github.com/ShuhongChen/bizarre-pose-estimator)"
MODEL_REPO = "public-data/bizarre-pose-estimator-models"
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall() # noqa: S202
return sorted(image_dir.glob("*"))
def load_model(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(MODEL_REPO, "tagger.pth")
state_dict = torch.load(path)
model = torchvision.models.resnet50(num_classes=1062)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def load_labels() -> list[str]:
label_path = huggingface_hub.hf_hub_download(MODEL_REPO, "tags.txt")
with pathlib.Path(label_path).open() as f:
return [line.strip() for line in f]
@torch.inference_mode()
def predict(
image: PIL.Image.Image, score_threshold: float, device: torch.device, model: torch.nn.Module, labels: list[str]
) -> dict[str, float]:
data = ImageWrapper(image).resize_square(256).alpha_bg(c="w").convert("RGB").tensor()
data = data.to(device).unsqueeze(0)
preds = model(data)[0]
preds = torch.sigmoid(preds)
preds = preds.cpu().numpy().astype(float)
res = {}
for prob, label in zip(preds.tolist(), labels, strict=True):
if prob < score_threshold:
continue
res[label] = prob
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
labels = load_labels()
fn = functools.partial(predict, device=device, model=model, labels=labels)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="pil")
threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Label(label="Output")
inputs = [image, threshold]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=inputs,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()
|