Update
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.34.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -18,13 +18,9 @@ sys.path.insert(0, 'bizarre-pose-estimator')
|
|
18 |
|
19 |
from _util.twodee_v0 import I as ImageWrapper
|
20 |
|
21 |
-
|
22 |
-
DESCRIPTION = 'This is an unofficial demo for https://github.com/ShuhongChen/bizarre-pose-estimator.'
|
23 |
|
24 |
-
|
25 |
-
MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
|
26 |
-
MODEL_FILENAME = 'tagger.pth'
|
27 |
-
LABEL_FILENAME = 'tags.txt'
|
28 |
|
29 |
|
30 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
@@ -33,17 +29,14 @@ def load_sample_image_paths() -> list[pathlib.Path]:
|
|
33 |
dataset_repo = 'hysts/sample-images-TADNE'
|
34 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
35 |
'images.tar.gz',
|
36 |
-
repo_type='dataset'
|
37 |
-
use_auth_token=HF_TOKEN)
|
38 |
with tarfile.open(path) as f:
|
39 |
f.extractall()
|
40 |
return sorted(image_dir.glob('*'))
|
41 |
|
42 |
|
43 |
def load_model(device: torch.device) -> torch.nn.Module:
|
44 |
-
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
45 |
-
MODEL_FILENAME,
|
46 |
-
use_auth_token=HF_TOKEN)
|
47 |
state_dict = torch.load(path)
|
48 |
model = torchvision.models.resnet50(num_classes=1062)
|
49 |
model.load_state_dict(state_dict)
|
@@ -53,9 +46,7 @@ def load_model(device: torch.device) -> torch.nn.Module:
|
|
53 |
|
54 |
|
55 |
def load_labels() -> list[str]:
|
56 |
-
label_path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
57 |
-
LABEL_FILENAME,
|
58 |
-
use_auth_token=HF_TOKEN)
|
59 |
with open(label_path) as f:
|
60 |
labels = [line.strip() for line in f.readlines()]
|
61 |
return labels
|
@@ -88,20 +79,27 @@ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
88 |
model = load_model(device)
|
89 |
labels = load_labels()
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
gr.
|
94 |
-
|
95 |
-
|
96 |
-
gr.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
from _util.twodee_v0 import I as ImageWrapper
|
20 |
|
21 |
+
DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (tagger)](https://github.com/ShuhongChen/bizarre-pose-estimator)'
|
|
|
22 |
|
23 |
+
MODEL_REPO = 'public-data/bizarre-pose-estimator-models'
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
|
|
29 |
dataset_repo = 'hysts/sample-images-TADNE'
|
30 |
path = huggingface_hub.hf_hub_download(dataset_repo,
|
31 |
'images.tar.gz',
|
32 |
+
repo_type='dataset')
|
|
|
33 |
with tarfile.open(path) as f:
|
34 |
f.extractall()
|
35 |
return sorted(image_dir.glob('*'))
|
36 |
|
37 |
|
38 |
def load_model(device: torch.device) -> torch.nn.Module:
|
39 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tagger.pth')
|
|
|
|
|
40 |
state_dict = torch.load(path)
|
41 |
model = torchvision.models.resnet50(num_classes=1062)
|
42 |
model.load_state_dict(state_dict)
|
|
|
46 |
|
47 |
|
48 |
def load_labels() -> list[str]:
|
49 |
+
label_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tags.txt')
|
|
|
|
|
50 |
with open(label_path) as f:
|
51 |
labels = [line.strip() for line in f.readlines()]
|
52 |
return labels
|
|
|
79 |
model = load_model(device)
|
80 |
labels = load_labels()
|
81 |
|
82 |
+
fn = functools.partial(predict, device=device, model=model, labels=labels)
|
83 |
+
|
84 |
+
with gr.Blocks(css='style.css') as demo:
|
85 |
+
gr.Markdown(DESCRIPTION)
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
image = gr.Image(label='Input', type='pil')
|
89 |
+
threshold = gr.Slider(label='Score Threshold',
|
90 |
+
minimum=0,
|
91 |
+
maximum=1,
|
92 |
+
step=0.05,
|
93 |
+
value=0.5)
|
94 |
+
run_button = gr.Button('Run')
|
95 |
+
with gr.Column():
|
96 |
+
result = gr.Label(label='Output')
|
97 |
+
|
98 |
+
inputs = [image, threshold]
|
99 |
+
gr.Examples(examples=examples,
|
100 |
+
inputs=inputs,
|
101 |
+
outputs=result,
|
102 |
+
fn=fn,
|
103 |
+
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
104 |
+
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
|
105 |
+
demo.queue(max_size=15).launch()
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|