File size: 3,260 Bytes
9bdd97c f57e36f 9bdd97c 7479a3a 9bdd97c 7479a3a 9bdd97c f57e36f 9bdd97c f57e36f 7479a3a f57e36f 7479a3a f57e36f 7479a3a f57e36f 9bdd97c 76221dd 9bdd97c ed7463d 7479a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import sys
import tarfile
import gradio as gr
import huggingface_hub
import PIL.Image
import torch
import torchvision
sys.path.insert(0, 'bizarre-pose-estimator')
from _util.twodee_v0 import I as ImageWrapper
DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (tagger)](https://github.com/ShuhongChen/bizarre-pose-estimator)'
MODEL_REPO = 'public-data/bizarre-pose-estimator-models'
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset')
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tagger.pth')
state_dict = torch.load(path)
model = torchvision.models.resnet50(num_classes=1062)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def load_labels() -> list[str]:
label_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tags.txt')
with open(label_path) as f:
labels = [line.strip() for line in f.readlines()]
return labels
@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
device: torch.device, model: torch.nn.Module,
labels: list[str]) -> dict[str, float]:
data = ImageWrapper(image).resize_square(256).alpha_bg(
c='w').convert('RGB').tensor()
data = data.to(device).unsqueeze(0)
preds = model(data)[0]
preds = torch.sigmoid(preds)
preds = preds.cpu().numpy().astype(float)
res = dict()
for prob, label in zip(preds.tolist(), labels):
if prob < score_threshold:
continue
res[label] = prob
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
labels = load_labels()
fn = functools.partial(predict, device=device, model=model, labels=labels)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='pil')
threshold = gr.Slider(label='Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Label(label='Output')
inputs = [image, threshold]
gr.Examples(examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
demo.queue(max_size=15).launch()
|