hysts's picture
hysts HF Staff
Update
980e614
raw
history blame
4.29 kB
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import sys
import tarfile
from typing import Callable
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as T
sys.path.insert(0, 'bizarre-pose-estimator')
from _util.twodee_v0 import I as ImageWrapper
TITLE = 'ShuhongChen/bizarre-pose-estimator (segmenter)'
DESCRIPTION = 'This is an unofficial demo for https://github.com/ShuhongChen/bizarre-pose-estimator.'
HF_TOKEN = os.getenv('HF_TOKEN')
MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
MODEL_FILENAME = 'segmenter.pth'
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset',
use_auth_token=HF_TOKEN)
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model(
device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
path = huggingface_hub.hf_hub_download(MODEL_REPO,
MODEL_FILENAME,
use_auth_token=HF_TOKEN)
ckpt = torch.load(path)
model = torchvision.models.segmentation.deeplabv3_resnet101()
model.classifier = nn.Sequential(
torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]),
nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.LeakyReLU(),
)
final_head = nn.Sequential(
nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.LeakyReLU(),
nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(8),
nn.LeakyReLU(),
nn.Conv2d(8, 2, kernel_size=1, stride=1),
)
model.load_state_dict(ckpt['model'])
final_head.load_state_dict(ckpt['final_head'])
model.to(device)
model.eval()
final_head.to(device)
final_head.eval()
return model, final_head
@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
transform: Callable, device: torch.device, model: torch.nn.Module,
final_head: torch.nn.Module) -> np.ndarray:
data = ImageWrapper(image).resize_min(256).convert('RGBA').alpha_bg(
1).convert('RGB').pil()
data = torchvision.transforms.functional.to_tensor(data)
data = transform(data)
data = data.to(device).unsqueeze(0)
out = model(data)['out']
out_fin = final_head(torch.cat([
out,
data,
], dim=1))
probs = torch.softmax(out_fin, dim=1)[0]
probs = probs[1] # foreground
probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)
mask = np.asarray(probs).copy()
mask[mask < score_threshold] = 0
mask[mask > 0] = 1
mask = mask.astype(bool)
res = np.asarray(image).copy()
res[~mask] = 255
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model, final_head = load_model(device)
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
func = functools.partial(predict,
transform=transform,
device=device,
model=model,
final_head=final_head)
gr.Interface(
fn=func,
inputs=[
gr.Image(type='pil', label='Input'),
gr.Slider(label='Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5),
],
outputs=gr.Image(label='Masked'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
).queue().launch(show_api=False)