File size: 4,453 Bytes
af898ba b9829b9 af898ba b9829b9 af898ba b9829b9 af898ba 980e614 af898ba 980e614 af898ba 980e614 b9829b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import sys
import tarfile
from typing import Callable
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as T
sys.path.insert(0, 'bizarre-pose-estimator')
from _util.twodee_v0 import I as ImageWrapper
DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (segmenter)](https://github.com/ShuhongChen/bizarre-pose-estimator)'
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset')
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model(
device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
path = huggingface_hub.hf_hub_download(
'public-data/bizarre-pose-estimator-models', 'segmenter.pth')
ckpt = torch.load(path)
model = torchvision.models.segmentation.deeplabv3_resnet101()
model.classifier = nn.Sequential(
torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]),
nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.LeakyReLU(),
)
final_head = nn.Sequential(
nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.LeakyReLU(),
nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(8),
nn.LeakyReLU(),
nn.Conv2d(8, 2, kernel_size=1, stride=1),
)
model.load_state_dict(ckpt['model'])
final_head.load_state_dict(ckpt['final_head'])
model.to(device)
model.eval()
final_head.to(device)
final_head.eval()
return model, final_head
@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
transform: Callable, device: torch.device, model: torch.nn.Module,
final_head: torch.nn.Module) -> np.ndarray:
data = ImageWrapper(image).resize_min(256).convert('RGBA').alpha_bg(
1).convert('RGB').pil()
data = torchvision.transforms.functional.to_tensor(data)
data = transform(data)
data = data.to(device).unsqueeze(0)
out = model(data)['out']
out_fin = final_head(torch.cat([
out,
data,
], dim=1))
probs = torch.softmax(out_fin, dim=1)[0]
probs = probs[1] # foreground
probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)
mask = np.asarray(probs).copy()
mask[mask < score_threshold] = 0
mask[mask > 0] = 1
mask = mask.astype(bool)
res = np.asarray(image).copy()
res[~mask] = 255
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model, final_head = load_model(device)
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
fn = functools.partial(predict,
transform=transform,
device=device,
model=model,
final_head=final_head)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='pil')
threshold = gr.Slider(label='Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Masked')
inputs = [image, threshold]
gr.Examples(examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
demo.queue(max_size=15).launch()
|