|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
import tarfile |
|
|
|
if os.getenv('SYSTEM') == 'spaces': |
|
subprocess.run( |
|
shlex.split( |
|
'pip install git+https://github.com/facebookresearch/[email protected]' |
|
)) |
|
subprocess.run( |
|
shlex.split( |
|
'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87')) |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import torch |
|
from adet.config import get_cfg |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.engine.defaults import DefaultPredictor |
|
from detectron2.utils.visualizer import Visualizer |
|
|
|
DESCRIPTION = '# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)' |
|
|
|
MODEL_REPO = 'public-data/Yet-Another-Anime-Segmenter' |
|
|
|
|
|
def load_sample_image_paths() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path('images') |
|
if not image_dir.exists(): |
|
dataset_repo = 'hysts/sample-images-TADNE' |
|
path = huggingface_hub.hf_hub_download(dataset_repo, |
|
'images.tar.gz', |
|
repo_type='dataset') |
|
with tarfile.open(path) as f: |
|
f.extractall() |
|
return sorted(image_dir.glob('*')) |
|
|
|
|
|
def load_model(device: torch.device) -> DefaultPredictor: |
|
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.yaml') |
|
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.pth') |
|
cfg = get_cfg() |
|
cfg.merge_from_file(config_path) |
|
cfg.MODEL.WEIGHTS = model_path |
|
cfg.MODEL.DEVICE = device.type |
|
cfg.freeze() |
|
return DefaultPredictor(cfg) |
|
|
|
|
|
def predict(image_path: str, class_score_threshold: float, |
|
mask_score_threshold: float, |
|
model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]: |
|
model.score_threshold = class_score_threshold |
|
model.mask_threshold = mask_score_threshold |
|
image = read_image(image_path, format='BGR') |
|
preds = model(image) |
|
instances = preds['instances'].to('cpu') |
|
|
|
visualizer = Visualizer(image[:, :, ::-1]) |
|
vis = visualizer.draw_instance_predictions(predictions=instances) |
|
vis = vis.get_image() |
|
|
|
masked = image.copy()[:, :, ::-1] |
|
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) |
|
masked[mask == 0] = 255 |
|
|
|
return vis, masked |
|
|
|
|
|
image_paths = load_sample_image_paths() |
|
examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths] |
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
model = load_model(device) |
|
|
|
fn = functools.partial(predict, model=model) |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label='Input', type='filepath') |
|
class_score_threshold = gr.Slider(label='Score Threshold', |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.1) |
|
mask_score_threshold = gr.Slider(label='Mask Score Threshold', |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.5) |
|
run_button = gr.Button('Run') |
|
with gr.Column(): |
|
result_instances = gr.Image(label='Instances') |
|
result_masked = gr.Image(label='Masked') |
|
|
|
inputs = [image, class_score_threshold, mask_score_threshold] |
|
outputs = [result_instances, result_masked] |
|
gr.Examples(examples=examples, |
|
inputs=inputs, |
|
outputs=outputs, |
|
fn=fn, |
|
cache_examples=os.getenv('CACHE_EXAMPLES') == '1') |
|
run_button.click(fn=fn, inputs=inputs, outputs=outputs, api_name='predict') |
|
demo.queue(max_size=15).launch() |
|
|