#!/usr/bin/env python from __future__ import annotations import functools import os import pathlib import shlex import subprocess import tarfile if os.getenv('SYSTEM') == 'spaces': subprocess.run( shlex.split( 'pip install git+https://github.com/facebookresearch/detectron2@v0.6' )) subprocess.run( shlex.split( 'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87')) import gradio as gr import huggingface_hub import numpy as np import torch from adet.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.visualizer import Visualizer DESCRIPTION = '# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)' MODEL_REPO = 'public-data/Yet-Another-Anime-Segmenter' def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): dataset_repo = 'hysts/sample-images-TADNE' path = huggingface_hub.hf_hub_download(dataset_repo, 'images.tar.gz', repo_type='dataset') with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob('*')) def load_model(device: torch.device) -> DefaultPredictor: config_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.yaml') model_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.pth') cfg = get_cfg() cfg.merge_from_file(config_path) cfg.MODEL.WEIGHTS = model_path cfg.MODEL.DEVICE = device.type cfg.freeze() return DefaultPredictor(cfg) def predict(image_path: str, class_score_threshold: float, mask_score_threshold: float, model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]: model.score_threshold = class_score_threshold model.mask_threshold = mask_score_threshold image = read_image(image_path, format='BGR') preds = model(image) instances = preds['instances'].to('cpu') visualizer = Visualizer(image[:, :, ::-1]) vis = visualizer.draw_instance_predictions(predictions=instances) vis = vis.get_image() masked = image.copy()[:, :, ::-1] mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) masked[mask == 0] = 255 return vis, masked image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths] device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model(device) fn = functools.partial(predict, model=model) with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='filepath') class_score_threshold = gr.Slider(label='Score Threshold', minimum=0, maximum=1, step=0.05, value=0.1) mask_score_threshold = gr.Slider(label='Mask Score Threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') with gr.Column(): result_instances = gr.Image(label='Instances') result_masked = gr.Image(label='Masked') inputs = [image, class_score_threshold, mask_score_threshold] outputs = [result_instances, result_masked] gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=fn, cache_examples=os.getenv('CACHE_EXAMPLES') == '1') run_button.click(fn=fn, inputs=inputs, outputs=outputs, api_name='predict') demo.queue(max_size=15).launch()