Spaces:
Runtime error
Runtime error
import streamlit as st | |
import json | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def visualization(path_data, lang, num_docs, num_docs_for_words): | |
with open(path_data) as json_file: | |
data = json.load(json_file) | |
num_docs = min(num_docs, len(data)) | |
st.title(f"{num_docs} {lang} documents from Oscar with their stats.") | |
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]] | |
words = [word for sentence in sentences for word in sentence] | |
words_data = [{"len_word": len(word), "word": word} for word in words] | |
words_data = pd.DataFrame(words_data) | |
data = data[:num_docs] | |
data = pd.DataFrame(data) | |
columns = list(data) | |
keys = [] | |
st.header("Parameters of the filtering") | |
if "special_characters_ratio" in columns: | |
cutoff_special_characters_ratio = st.slider( | |
"Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01 | |
) | |
keys.append(("special_characters_ratio", cutoff_special_characters_ratio, True)) | |
if "stopwords_ratio" in columns: | |
cutoff_stopwords_ratio = st.slider( | |
"Min cutoff stopwords ratio", 0.0, 1.0, 0.0, step=0.01 | |
) | |
keys.append(("stopwords_ratio", cutoff_stopwords_ratio, False)) | |
if "badwords_ratio" in columns: | |
cutoff_badwords_ratio = st.slider( | |
"Max cutoff badwords ratio", 0.0, 1.0, 1.0, step=0.001 | |
) | |
keys.append(("badwords_ratio", cutoff_badwords_ratio, True)) | |
if "lang_id_score" in columns: | |
cutoff_lang_id_score = st.slider( | |
"Min cutoff lang id score", 0.0, 1.0, 0.0, step=0.01 | |
) | |
keys.append(("lang_id_score", cutoff_lang_id_score, False)) | |
if "perplexity_score" in columns: | |
max_pp = int(np.max(data["perplexity_score"])) + 1 | |
cutoff_perplexity_score = st.slider( | |
"Perplexity cutoff perplexity score", 0, max_pp, max_pp | |
) | |
keys.append(("perplexity_score", cutoff_perplexity_score, True)) | |
cond = [ | |
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff) | |
for key, cutoff, max_cutoff in keys | |
] | |
cond = np.all(cond, axis=0) | |
data_keep = data.loc[cond] | |
st.header("Data that we keep") | |
st.markdown("Click on a column to sort by it.") | |
st.markdown("Place the cursor on the text to display it.") | |
st.dataframe(data_keep) | |
data_not_keep = data.loc[np.invert(cond)] | |
st.header("Data that is thrown away") | |
st.markdown("Click on a column to sort by it.") | |
st.markdown("Place the cursor on the text to display it.") | |
st.dataframe(data_not_keep) | |
def plot_hist(dataframe, key, num_bins=50): | |
st.header(" ".join(key.split("_"))) | |
hist_values = dataframe[key].values | |
max_range = np.max(hist_values) | |
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0] | |
st.bar_chart(hist_values) | |
st.markdown(f"Each bin is of size: {max_range/num_bins}.") | |
for key, _, _ in keys: | |
plot_hist(data, key) | |
st.header("Zipf's Law") | |
def get_frequency_words(data): | |
freq_words = {} | |
for index, row in data.iterrows(): | |
for word in row["text"].split(" "): | |
if word in freq_words: | |
freq_words[word] += 1 | |
else: | |
freq_words[word] = 1 | |
freq_words = np.array(list(freq_words.values())) | |
freq_words = -np.sort(-freq_words) | |
return freq_words | |
freq_words_data = get_frequency_words(data) | |
freq_words_data_keep = get_frequency_words(data_keep) | |
freq_words_data_not_keep = get_frequency_words(data_not_keep) | |
fig, ax = plt.subplots() | |
ax.loglog(freq_words_data) | |
ax.loglog(freq_words_data_keep) | |
ax.loglog(freq_words_data_not_keep) | |
ax.set_title("Zipf's Law") | |
ax.set_xlabel("$i$-th most frequent word") | |
ax.set_ylabel("frequency in the documents") | |
ax.legend(["All data", "Data that we keep", "Data that is thrown away"]) | |
st.pyplot(fig) | |
st.markdown("If less than three curves are displayed, it means that there are overlaps.") | |
st.header("Parameter of the filtering for words") | |
max_len_word = int(np.max(words_data["len_word"])) + 1 | |
cutoff_word = st.slider("Max cutoff length word", 0, max_len_word, max_len_word) | |
cond_words = words_data["len_word"] <= cutoff_word | |
words_keep = words_data.loc[cond_words] | |
st.header(f"Words that we keep (for {num_docs_for_words} documents)") | |
st.markdown("Click on a column to sort by it.") | |
st.markdown("Place the cursor on the text to display it.") | |
st.dataframe(words_keep) | |
words_not_keep = words_data.loc[np.invert(cond_words)] | |
st.header(f"Words that are thrown away (for {num_docs_for_words} documents)") | |
st.markdown("Click on a column to sort by it.") | |
st.markdown("Place the cursor on the text to display it.") | |
st.dataframe(words_not_keep) | |
plot_hist(words_data, "len_word") | |
st.header("Download data") | |
with open(path_data) as json_file: | |
btn = st.download_button( | |
label="Download data as json", | |
data=json_file, | |
file_name="data.json", | |
) | |
path_data = "./en_examples_with_stats.json" | |
lang = "English" | |
num_docs = 5000 | |
num_docs_for_words = 500 | |
visualization(path_data, lang, num_docs, num_docs_for_words) | |