Spaces:
Runtime error
Runtime error
File size: 5,366 Bytes
fc95975 4bbaeac ffdfff7 fc95975 f622ed0 ffdfff7 f622ed0 ffdfff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def visualization(path_data, lang, num_docs, num_docs_for_words):
with open(path_data) as json_file:
data = json.load(json_file)
num_docs = min(num_docs, len(data))
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
words = [word for sentence in sentences for word in sentence]
words_data = [{"len_word": len(word), "word": word} for word in words]
words_data = pd.DataFrame(words_data)
data = data[:num_docs]
data = pd.DataFrame(data)
columns = list(data)
keys = []
st.header("Parameters of the filtering")
if "special_characters_ratio" in columns:
cutoff_special_characters_ratio = st.slider(
"Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01
)
keys.append(("special_characters_ratio", cutoff_special_characters_ratio, True))
if "stopwords_ratio" in columns:
cutoff_stopwords_ratio = st.slider(
"Min cutoff stopwords ratio", 0.0, 1.0, 0.0, step=0.01
)
keys.append(("stopwords_ratio", cutoff_stopwords_ratio, False))
if "badwords_ratio" in columns:
cutoff_badwords_ratio = st.slider(
"Max cutoff badwords ratio", 0.0, 1.0, 1.0, step=0.001
)
keys.append(("badwords_ratio", cutoff_badwords_ratio, True))
if "lang_id_score" in columns:
cutoff_lang_id_score = st.slider(
"Min cutoff lang id score", 0.0, 1.0, 0.0, step=0.01
)
keys.append(("lang_id_score", cutoff_lang_id_score, False))
if "perplexity_score" in columns:
max_pp = int(np.max(data["perplexity_score"])) + 1
cutoff_perplexity_score = st.slider(
"Perplexity cutoff perplexity score", 0, max_pp, max_pp
)
keys.append(("perplexity_score", cutoff_perplexity_score, True))
cond = [
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
for key, cutoff, max_cutoff in keys
]
cond = np.all(cond, axis=0)
data_keep = data.loc[cond]
st.header("Data that we keep")
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(data_keep)
data_not_keep = data.loc[np.invert(cond)]
st.header("Data that is thrown away")
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(data_not_keep)
def plot_hist(dataframe, key, num_bins=50):
st.header(" ".join(key.split("_")))
hist_values = dataframe[key].values
max_range = np.max(hist_values)
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
st.bar_chart(hist_values)
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
for key, _, _ in keys:
plot_hist(data, key)
st.header("Zipf's Law")
def get_frequency_words(data):
freq_words = {}
for index, row in data.iterrows():
for word in row["text"].split(" "):
if word in freq_words:
freq_words[word] += 1
else:
freq_words[word] = 1
freq_words = np.array(list(freq_words.values()))
freq_words = -np.sort(-freq_words)
return freq_words
freq_words_data = get_frequency_words(data)
freq_words_data_keep = get_frequency_words(data_keep)
freq_words_data_not_keep = get_frequency_words(data_not_keep)
fig, ax = plt.subplots()
ax.loglog(freq_words_data)
ax.loglog(freq_words_data_keep)
ax.loglog(freq_words_data_not_keep)
ax.set_title("Zipf's Law")
ax.set_xlabel("$i$-th most frequent word")
ax.set_ylabel("frequency in the documents")
ax.legend(["All data", "Data that we keep", "Data that is thrown away"])
st.pyplot(fig)
st.markdown("If less than three curves are displayed, it means that there are overlaps.")
st.header("Parameter of the filtering for words")
max_len_word = int(np.max(words_data["len_word"])) + 1
cutoff_word = st.slider("Max cutoff length word", 0, max_len_word, max_len_word)
cond_words = words_data["len_word"] <= cutoff_word
words_keep = words_data.loc[cond_words]
st.header(f"Words that we keep (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(words_keep)
words_not_keep = words_data.loc[np.invert(cond_words)]
st.header(f"Words that are thrown away (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(words_not_keep)
plot_hist(words_data, "len_word")
st.header("Download data")
with open(path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
visualization(path_data, lang, num_docs, num_docs_for_words)
|