Thomas G. Lopes
add fuzzy searching
0ff4ef8
raw
history blame
5.64 kB
import type { Conversation, ModelWithTokenizer } from "$lib/types";
import type { InferenceSnippet } from "@huggingface/tasks";
import { type ChatCompletionOutputMessage } from "@huggingface/tasks";
import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference";
export async function handleStreamingResponse(
hf: HfInference,
conversation: Conversation,
onChunk: (content: string) => void,
abortController: AbortController
): Promise<void> {
const { model, systemMessage } = conversation;
const messages = [
...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
...conversation.messages,
];
let out = "";
for await (const chunk of hf.chatCompletionStream(
{
model: model.id,
messages,
provider: conversation.provider,
...conversation.config,
},
{ signal: abortController.signal }
)) {
if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) {
out += chunk.choices[0].delta.content;
onChunk(out);
}
}
}
export async function handleNonStreamingResponse(
hf: HfInference,
conversation: Conversation
): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> {
const { model, systemMessage } = conversation;
const messages = [
...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []),
...conversation.messages,
];
const response = await hf.chatCompletion({
model: model.id,
messages,
provider: conversation.provider,
...conversation.config,
});
if (response.choices && response.choices.length > 0) {
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const { message } = response.choices[0]!;
const { completion_tokens } = response.usage;
return { message, completion_tokens };
}
throw new Error("No response from the model");
}
export function isSystemPromptSupported(model: ModelWithTokenizer) {
return model?.tokenizerConfig?.chat_template?.includes("system");
}
export const defaultSystemMessage: { [key: string]: string } = {
"Qwen/QwQ-32B-Preview":
"You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
} as const;
export const customMaxTokens: { [key: string]: number } = {
"01-ai/Yi-1.5-34B-Chat": 2048,
"HuggingFaceM4/idefics-9b-instruct": 2048,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384,
"bigcode/starcoder": 8192,
"bigcode/starcoderplus": 8192,
"HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192,
"google/gemma-7b": 8192,
"google/gemma-1.1-7b-it": 8192,
"google/gemma-2b": 8192,
"google/gemma-1.1-2b-it": 8192,
"google/gemma-2-27b-it": 8192,
"google/gemma-2-9b-it": 4096,
"google/gemma-2-2b-it": 8192,
"tiiuae/falcon-7b": 8192,
"tiiuae/falcon-7b-instruct": 8192,
"timdettmers/guanaco-33b-merged": 2048,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"Qwen/Qwen2.5-72B-Instruct": 32768,
"Qwen/Qwen2.5-Coder-32B-Instruct": 32768,
"meta-llama/Meta-Llama-3-70B-Instruct": 8192,
"CohereForAI/c4ai-command-r-plus-08-2024": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"meta-llama/Llama-2-70b-chat-hf": 8192,
"HuggingFaceH4/zephyr-7b-alpha": 17432,
"HuggingFaceH4/zephyr-7b-beta": 32768,
"mistralai/Mistral-7B-Instruct-v0.1": 32768,
"mistralai/Mistral-7B-Instruct-v0.2": 32768,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3-8B-Instruct": 8192,
"mistralai/Mistral-7B-v0.1": 32768,
"bigcode/starcoder2-3b": 16384,
"bigcode/starcoder2-15b": 16384,
"HuggingFaceH4/starchat2-15b-v0.1": 16384,
"codellama/CodeLlama-7b-hf": 8192,
"codellama/CodeLlama-13b-hf": 8192,
"codellama/CodeLlama-34b-Instruct-hf": 8192,
"meta-llama/Llama-2-7b-chat-hf": 8192,
"meta-llama/Llama-2-13b-chat-hf": 8192,
"OpenAssistant/oasst-sft-6-llama-30b": 2048,
"TheBloke/vicuna-7B-v1.5-GPTQ": 2048,
"HuggingFaceH4/starchat-beta": 8192,
"bigcode/octocoder": 8192,
"vwxyzjn/starcoderbase-triviaqa": 8192,
"lvwerra/starcoderbase-gsm8k": 8192,
"NousResearch/Hermes-3-Llama-3.1-8B": 16384,
"microsoft/Phi-3.5-mini-instruct": 32768,
"meta-llama/Llama-3.1-70B-Instruct": 32768,
"meta-llama/Llama-3.1-8B-Instruct": 8192,
} as const;
// Order of the elements in InferenceModal.svelte is determined by this const
export const inferenceSnippetLanguages = ["python", "js", "curl"] as const;
export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number];
const GET_SNIPPET_FN = {
curl: snippets.curl.getCurlInferenceSnippet,
js: snippets.js.getJsInferenceSnippet,
python: snippets.python.getPythonInferenceSnippet,
} as const;
export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[];
export function getInferenceSnippet(
model: ModelWithTokenizer,
provider: InferenceProvider,
language: InferenceSnippetLanguage,
accessToken: string,
opts?: Record<string, unknown>
): GetInferenceSnippetReturn {
const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId;
const snippetsByClient = GET_SNIPPET_FN[language](
{ ...model, inference: "" },
accessToken,
provider,
providerId,
opts
);
return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language }));
}
/**
* - If language is defined, the function checks if in an inference snippet is available for that specific language
*/
export function hasInferenceSnippet(
model: ModelWithTokenizer,
provider: InferenceProvider,
language: InferenceSnippetLanguage
): boolean {
return getInferenceSnippet(model, provider, language, "").length > 0;
}