import type { Conversation, ModelWithTokenizer } from "$lib/types"; import type { InferenceSnippet } from "@huggingface/tasks"; import { type ChatCompletionOutputMessage } from "@huggingface/tasks"; import { HfInference, snippets, type InferenceProvider } from "@huggingface/inference"; export async function handleStreamingResponse( hf: HfInference, conversation: Conversation, onChunk: (content: string) => void, abortController: AbortController ): Promise { const { model, systemMessage } = conversation; const messages = [ ...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []), ...conversation.messages, ]; let out = ""; for await (const chunk of hf.chatCompletionStream( { model: model.id, messages, provider: conversation.provider, ...conversation.config, }, { signal: abortController.signal } )) { if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) { out += chunk.choices[0].delta.content; onChunk(out); } } } export async function handleNonStreamingResponse( hf: HfInference, conversation: Conversation ): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> { const { model, systemMessage } = conversation; const messages = [ ...(isSystemPromptSupported(model) && systemMessage.content?.length ? [systemMessage] : []), ...conversation.messages, ]; const response = await hf.chatCompletion({ model: model.id, messages, provider: conversation.provider, ...conversation.config, }); if (response.choices && response.choices.length > 0) { // eslint-disable-next-line @typescript-eslint/no-non-null-assertion const { message } = response.choices[0]!; const { completion_tokens } = response.usage; return { message, completion_tokens }; } throw new Error("No response from the model"); } export function isSystemPromptSupported(model: ModelWithTokenizer) { return model?.tokenizerConfig?.chat_template?.includes("system"); } export const defaultSystemMessage: { [key: string]: string } = { "Qwen/QwQ-32B-Preview": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", } as const; export const customMaxTokens: { [key: string]: number } = { "01-ai/Yi-1.5-34B-Chat": 2048, "HuggingFaceM4/idefics-9b-instruct": 2048, "deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384, "bigcode/starcoder": 8192, "bigcode/starcoderplus": 8192, "HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192, "google/gemma-7b": 8192, "google/gemma-1.1-7b-it": 8192, "google/gemma-2b": 8192, "google/gemma-1.1-2b-it": 8192, "google/gemma-2-27b-it": 8192, "google/gemma-2-9b-it": 4096, "google/gemma-2-2b-it": 8192, "tiiuae/falcon-7b": 8192, "tiiuae/falcon-7b-instruct": 8192, "timdettmers/guanaco-33b-merged": 2048, "mistralai/Mixtral-8x7B-Instruct-v0.1": 32768, "Qwen/Qwen2.5-72B-Instruct": 32768, "Qwen/Qwen2.5-Coder-32B-Instruct": 32768, "meta-llama/Meta-Llama-3-70B-Instruct": 8192, "CohereForAI/c4ai-command-r-plus-08-2024": 32768, "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768, "meta-llama/Llama-2-70b-chat-hf": 8192, "HuggingFaceH4/zephyr-7b-alpha": 17432, "HuggingFaceH4/zephyr-7b-beta": 32768, "mistralai/Mistral-7B-Instruct-v0.1": 32768, "mistralai/Mistral-7B-Instruct-v0.2": 32768, "mistralai/Mistral-7B-Instruct-v0.3": 32768, "mistralai/Mistral-Nemo-Instruct-2407": 32768, "meta-llama/Meta-Llama-3-8B-Instruct": 8192, "mistralai/Mistral-7B-v0.1": 32768, "bigcode/starcoder2-3b": 16384, "bigcode/starcoder2-15b": 16384, "HuggingFaceH4/starchat2-15b-v0.1": 16384, "codellama/CodeLlama-7b-hf": 8192, "codellama/CodeLlama-13b-hf": 8192, "codellama/CodeLlama-34b-Instruct-hf": 8192, "meta-llama/Llama-2-7b-chat-hf": 8192, "meta-llama/Llama-2-13b-chat-hf": 8192, "OpenAssistant/oasst-sft-6-llama-30b": 2048, "TheBloke/vicuna-7B-v1.5-GPTQ": 2048, "HuggingFaceH4/starchat-beta": 8192, "bigcode/octocoder": 8192, "vwxyzjn/starcoderbase-triviaqa": 8192, "lvwerra/starcoderbase-gsm8k": 8192, "NousResearch/Hermes-3-Llama-3.1-8B": 16384, "microsoft/Phi-3.5-mini-instruct": 32768, "meta-llama/Llama-3.1-70B-Instruct": 32768, "meta-llama/Llama-3.1-8B-Instruct": 8192, } as const; // Order of the elements in InferenceModal.svelte is determined by this const export const inferenceSnippetLanguages = ["python", "js", "curl"] as const; export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number]; const GET_SNIPPET_FN = { curl: snippets.curl.getCurlInferenceSnippet, js: snippets.js.getJsInferenceSnippet, python: snippets.python.getPythonInferenceSnippet, } as const; export type GetInferenceSnippetReturn = (InferenceSnippet & { language: InferenceSnippetLanguage })[]; export function getInferenceSnippet( model: ModelWithTokenizer, provider: InferenceProvider, language: InferenceSnippetLanguage, accessToken: string, opts?: Record ): GetInferenceSnippetReturn { const providerId = model.inferenceProviderMapping.find(p => p.provider === provider)?.providerId; const snippetsByClient = GET_SNIPPET_FN[language]( { ...model, inference: "" }, accessToken, provider, providerId, opts ); return snippetsByClient.map(snippetByClient => ({ ...snippetByClient, language })); } /** * - If language is defined, the function checks if in an inference snippet is available for that specific language */ export function hasInferenceSnippet( model: ModelWithTokenizer, provider: InferenceProvider, language: InferenceSnippetLanguage ): boolean { return getInferenceSnippet(model, provider, language, "").length > 0; }