kashif's picture
kashif HF staff
updated instructions
59dac5b
raw
history blame
4.1 kB
import gradio as gr
import pandas as pd
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.evaluation import Evaluator, make_evaluation_predictions
from make_plot import plot_forecast, plot_train_test
def offset_calculation(prediction_length, rolling_windows, length):
row_offset = -1 * prediction_length * rolling_windows
if abs(row_offset) > 0.95 * length:
raise gr.Error("Reduce prediction_length * rolling_windows")
return row_offset
def preprocess(
input_data,
prediction_length,
rolling_windows,
progress=gr.Progress(track_tqdm=True),
):
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
return plot_train_test(df.iloc[:row_offset], df.iloc[row_offset:])
def train_and_forecast(
input_data,
prediction_length,
rolling_windows,
epochs,
progress=gr.Progress(track_tqdm=True),
):
if not input_data:
raise gr.Error("Upload a file with the Upload button")
try:
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
except AttributeError:
raise gr.Error("Upload a file with the Upload button")
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
try:
gluon_df = PandasDataset(df, target=df.columns[0])
except TypeError:
freq = pd.infer_freq(df.index[:3])
date_range = pd.date_range(df.index[0], df.index[-1], freq=freq)
new_df = df.reindex(date_range)
gluon_df = PandasDataset(new_df, target=new_df.columns[0], freq=freq)
training_data, test_gen = split(gluon_df, offset=row_offset)
estimator = DeepAREstimator(
prediction_length=prediction_length,
freq=gluon_df.freq,
trainer_kwargs=dict(max_epochs=epochs),
)
predictor = estimator.train(
training_data=training_data,
)
test_data = test_gen.generate_instances(
prediction_length=prediction_length, windows=rolling_windows
)
evaluator = Evaluator(num_workers=0)
forecast_it, ts_it = make_evaluation_predictions(
dataset=test_data.input, predictor=predictor
)
agg_metrics, _ = evaluator(ts_it, forecast_it)
forecasts = list(predictor.predict(test_data.input))
return plot_forecast(df, forecasts), agg_metrics
with gr.Blocks() as demo:
gr.Markdown(
"""
# How to use
Upload a *univariate* csv with the where the first column contains your dates and the second column is your data for example:
| ds | y |
|------------|---------------|
| 2007-12-10 | 9.590761 |
| 2007-12-11 | 8.519590 |
| 2007-12-12 | 8.183677 |
| 2007-12-13 | 8.072467 |
| 2007-12-14 | 7.893572 |
## Steps
1. Click **Upload** to upload your data and visualize it.
2. Click **Run**
- This app will then train an estimator and show its predictions as well as evaluation metrics.
"""
)
with gr.Accordion(label="Hyperparameters"):
with gr.Row():
prediction_length = gr.Number(
value=12, label="Prediction Length", precision=0
)
windows = gr.Number(value=3, label="Number of Windows", precision=0)
epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
with gr.Row(label="Dataset"):
upload_btn = gr.UploadButton(label="Upload")
train_btn = gr.Button(label="Train and Forecast")
plot = gr.Plot()
json = gr.JSON(label="Evaluation Metrics")
upload_btn.upload(
fn=preprocess,
inputs=[upload_btn, prediction_length, windows],
outputs=plot,
)
train_btn.click(
fn=train_and_forecast,
inputs=[upload_btn, prediction_length, windows, epochs],
outputs=[plot, json],
)
if __name__ == "__main__":
demo.queue().launch()