File size: 4,097 Bytes
97ab62b 49f2f3a 97ab62b e460697 97ab62b e460697 97ab62b e460697 97ab62b e460697 97ab62b e460697 d7202b3 97ab62b 49f2f3a 74d9e70 49f2f3a f30d430 97ab62b b359e4d 97ab62b b359e4d 59dac5b b359e4d 59dac5b 97ab62b 59dac5b 49f2f3a 97ab62b 49f2f3a 97ab62b 74d9e70 97ab62b 49f2f3a 74d9e70 49f2f3a 74d9e70 49f2f3a 97ab62b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import pandas as pd
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.evaluation import Evaluator, make_evaluation_predictions
from make_plot import plot_forecast, plot_train_test
def offset_calculation(prediction_length, rolling_windows, length):
row_offset = -1 * prediction_length * rolling_windows
if abs(row_offset) > 0.95 * length:
raise gr.Error("Reduce prediction_length * rolling_windows")
return row_offset
def preprocess(
input_data,
prediction_length,
rolling_windows,
progress=gr.Progress(track_tqdm=True),
):
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
return plot_train_test(df.iloc[:row_offset], df.iloc[row_offset:])
def train_and_forecast(
input_data,
prediction_length,
rolling_windows,
epochs,
progress=gr.Progress(track_tqdm=True),
):
if not input_data:
raise gr.Error("Upload a file with the Upload button")
try:
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
except AttributeError:
raise gr.Error("Upload a file with the Upload button")
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
try:
gluon_df = PandasDataset(df, target=df.columns[0])
except TypeError:
freq = pd.infer_freq(df.index[:3])
date_range = pd.date_range(df.index[0], df.index[-1], freq=freq)
new_df = df.reindex(date_range)
gluon_df = PandasDataset(new_df, target=new_df.columns[0], freq=freq)
training_data, test_gen = split(gluon_df, offset=row_offset)
estimator = DeepAREstimator(
prediction_length=prediction_length,
freq=gluon_df.freq,
trainer_kwargs=dict(max_epochs=epochs),
)
predictor = estimator.train(
training_data=training_data,
)
test_data = test_gen.generate_instances(
prediction_length=prediction_length, windows=rolling_windows
)
evaluator = Evaluator(num_workers=0)
forecast_it, ts_it = make_evaluation_predictions(
dataset=test_data.input, predictor=predictor
)
agg_metrics, _ = evaluator(ts_it, forecast_it)
forecasts = list(predictor.predict(test_data.input))
return plot_forecast(df, forecasts), agg_metrics
with gr.Blocks() as demo:
gr.Markdown(
"""
# How to use
Upload a *univariate* csv with the where the first column contains your dates and the second column is your data for example:
| ds | y |
|------------|---------------|
| 2007-12-10 | 9.590761 |
| 2007-12-11 | 8.519590 |
| 2007-12-12 | 8.183677 |
| 2007-12-13 | 8.072467 |
| 2007-12-14 | 7.893572 |
## Steps
1. Click **Upload** to upload your data and visualize it.
2. Click **Run**
- This app will then train an estimator and show its predictions as well as evaluation metrics.
"""
)
with gr.Accordion(label="Hyperparameters"):
with gr.Row():
prediction_length = gr.Number(
value=12, label="Prediction Length", precision=0
)
windows = gr.Number(value=3, label="Number of Windows", precision=0)
epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
with gr.Row(label="Dataset"):
upload_btn = gr.UploadButton(label="Upload")
train_btn = gr.Button(label="Train and Forecast")
plot = gr.Plot()
json = gr.JSON(label="Evaluation Metrics")
upload_btn.upload(
fn=preprocess,
inputs=[upload_btn, prediction_length, windows],
outputs=plot,
)
train_btn.click(
fn=train_and_forecast,
inputs=[upload_btn, prediction_length, windows, epochs],
outputs=[plot, json],
)
if __name__ == "__main__":
demo.queue().launch()
|