File size: 4,097 Bytes
97ab62b
 
 
 
 
49f2f3a
97ab62b
 
 
 
 
 
 
 
 
 
 
e460697
 
 
 
 
 
97ab62b
e460697
97ab62b
 
 
 
e460697
 
 
 
 
 
 
97ab62b
 
 
 
e460697
97ab62b
 
 
 
 
e460697
 
 
 
d7202b3
 
 
97ab62b
 
 
49f2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d9e70
49f2f3a
 
 
f30d430
97ab62b
 
 
b359e4d
 
97ab62b
b359e4d
 
 
 
 
 
 
 
 
 
 
59dac5b
b359e4d
59dac5b
97ab62b
59dac5b
49f2f3a
 
 
97ab62b
49f2f3a
 
 
 
 
 
 
97ab62b
 
 
74d9e70
97ab62b
49f2f3a
 
74d9e70
49f2f3a
 
 
 
 
74d9e70
49f2f3a
97ab62b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import pandas as pd
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.evaluation import Evaluator, make_evaluation_predictions

from make_plot import plot_forecast, plot_train_test


def offset_calculation(prediction_length, rolling_windows, length):
    row_offset = -1 * prediction_length * rolling_windows
    if abs(row_offset) > 0.95 * length:
        raise gr.Error("Reduce prediction_length * rolling_windows")
    return row_offset


def preprocess(
    input_data,
    prediction_length,
    rolling_windows,
    progress=gr.Progress(track_tqdm=True),
):
    df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
    df.sort_index(inplace=True)
    row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
    return plot_train_test(df.iloc[:row_offset], df.iloc[row_offset:])


def train_and_forecast(
    input_data,
    prediction_length,
    rolling_windows,
    epochs,
    progress=gr.Progress(track_tqdm=True),
):
    if not input_data:
        raise gr.Error("Upload a file with the Upload button")
    try:
        df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
        df.sort_index(inplace=True)
    except AttributeError:
        raise gr.Error("Upload a file with the Upload button")

    row_offset = offset_calculation(prediction_length, rolling_windows, len(df))

    try:
        gluon_df = PandasDataset(df, target=df.columns[0])
    except TypeError:
        freq = pd.infer_freq(df.index[:3])
        date_range = pd.date_range(df.index[0], df.index[-1], freq=freq)
        new_df = df.reindex(date_range)
        gluon_df = PandasDataset(new_df, target=new_df.columns[0], freq=freq)

    training_data, test_gen = split(gluon_df, offset=row_offset)

    estimator = DeepAREstimator(
        prediction_length=prediction_length,
        freq=gluon_df.freq,
        trainer_kwargs=dict(max_epochs=epochs),
    )

    predictor = estimator.train(
        training_data=training_data,
    )

    test_data = test_gen.generate_instances(
        prediction_length=prediction_length, windows=rolling_windows
    )

    evaluator = Evaluator(num_workers=0)
    forecast_it, ts_it = make_evaluation_predictions(
        dataset=test_data.input, predictor=predictor
    )
    agg_metrics, _ = evaluator(ts_it, forecast_it)

    forecasts = list(predictor.predict(test_data.input))

    return plot_forecast(df, forecasts), agg_metrics


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # How to use

    Upload a *univariate* csv with the where the first column contains your dates and the second column is your data for example:

    | ds    | y        | 
    |------------|---------------|
    | 2007-12-10 | 9.590761      |
    | 2007-12-11 | 8.519590      |
    | 2007-12-12 | 8.183677      |
    | 2007-12-13 | 8.072467      |
    | 2007-12-14 | 7.893572      |

    ## Steps

    1. Click **Upload** to upload your data and visualize it.
    2. Click **Run**
        - This app will then train an estimator and show its predictions as well as evaluation metrics.
    """
    )
    with gr.Accordion(label="Hyperparameters"):
        with gr.Row():
            prediction_length = gr.Number(
                value=12, label="Prediction Length", precision=0
            )
            windows = gr.Number(value=3, label="Number of Windows", precision=0)
            epochs = gr.Number(value=10, label="Number of Epochs", precision=0)

    with gr.Row(label="Dataset"):
        upload_btn = gr.UploadButton(label="Upload")
        train_btn = gr.Button(label="Train and Forecast")
    plot = gr.Plot()
    json = gr.JSON(label="Evaluation Metrics")

    upload_btn.upload(
        fn=preprocess,
        inputs=[upload_btn, prediction_length, windows],
        outputs=plot,
    )
    train_btn.click(
        fn=train_and_forecast,
        inputs=[upload_btn, prediction_length, windows, epochs],
        outputs=[plot, json],
    )

if __name__ == "__main__":
    demo.queue().launch()