File size: 597 Bytes
b75af72
550c97e
b75af72
550c97e
 
b75af72
550c97e
 
 
 
b75af72
 
550c97e
 
 
 
 
b75af72
 
550c97e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
from transformers import pipeline

# Laden des Modells für Masked Language Modeling
unmasker = pipeline('fill-mask', model='bert-base-uncased')

# Gradio Interface
def masked_language_modeling(text):
    results = unmasker(text)
    return results[0]['sequence']

iface = gr.Interface(
    fn=masked_language_modeling,
    inputs=gr.Textbox(),
    outputs=gr.Textbox(),
    title='BERT Masked Language Modeling',
    description='Enter a sentence with a [MASK] and see the predictions.'
)

# Starte die Gradio Benutzeroberfläche
if __name__ == '__main__':
    iface.launch()