Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import BertForMaskedLM, BertTokenizer
|
4 |
-
import asyncio
|
5 |
-
|
6 |
-
# Modell und Tokenizer laden mit force_download=True
|
7 |
-
model_name = "bert-base-uncased"
|
8 |
-
model = BertForMaskedLM.from_pretrained(model_name, force_download=True)
|
9 |
-
tokenizer = BertTokenizer.from_pretrained(model_name, force_download=True)
|
10 |
-
|
11 |
-
# Inferenz-Funktion definieren
|
12 |
-
def inference(input_text):
|
13 |
-
if "[MASK]" not in input_text:
|
14 |
-
return "Error: The input text must contain the [MASK] token."
|
15 |
-
|
16 |
-
# Tokenisierung
|
17 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
18 |
-
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
19 |
-
|
20 |
-
# Vorhersage
|
21 |
-
with torch.no_grad():
|
22 |
-
outputs = model(**inputs)
|
23 |
-
logits = outputs.logits
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
top_token = torch.topk(mask_token_logits, 1, dim=1).indices[0].tolist()
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
return result_text
|
34 |
|
35 |
-
# Gradio Interface definieren
|
36 |
iface = gr.Interface(
|
37 |
-
fn=
|
38 |
-
inputs=
|
39 |
-
outputs=
|
40 |
-
|
41 |
-
|
42 |
-
["The quick brown fox jumps over the [MASK] dog."]
|
43 |
-
]
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
if __name__ ==
|
48 |
-
|
49 |
-
loop = asyncio.new_event_loop()
|
50 |
-
asyncio.set_event_loop(loop)
|
51 |
-
|
52 |
-
iface.launch(server_port=7862)
|
53 |
-
|
54 |
-
|
55 |
-
from transformers import pipeline
|
56 |
-
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
57 |
-
unmasker("Hello I'm a [MASK] model.")
|
58 |
-
|
59 |
-
from transformers import BertTokenizer, BertModel
|
60 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
61 |
-
model = BertModel.from_pretrained("bert-base-uncased")
|
62 |
-
text = "Replace me by any text you'd like."
|
63 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
64 |
-
output = model(**encoded_input)
|
65 |
-
|
66 |
-
|
67 |
-
from transformers import BertTokenizer, TFBertModel
|
68 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
69 |
-
model = TFBertModel.from_pretrained("bert-base-uncased")
|
70 |
-
text = "Replace me by any text you'd like."
|
71 |
-
encoded_input = tokenizer(text, return_tensors='tf')
|
72 |
-
output = model(encoded_input)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Laden des Modells für Masked Language Modeling
|
5 |
+
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
|
|
6 |
|
7 |
+
# Gradio Interface
|
8 |
+
def masked_language_modeling(text):
|
9 |
+
results = unmasker(text)
|
10 |
+
return results[0]['sequence']
|
|
|
11 |
|
|
|
12 |
iface = gr.Interface(
|
13 |
+
fn=masked_language_modeling,
|
14 |
+
inputs=gr.Textbox(),
|
15 |
+
outputs=gr.Textbox(),
|
16 |
+
title='BERT Masked Language Modeling',
|
17 |
+
description='Enter a sentence with a [MASK] and see the predictions.'
|
|
|
|
|
18 |
)
|
19 |
|
20 |
+
# Starte die Gradio Benutzeroberfläche
|
21 |
+
if __name__ == '__main__':
|
22 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|