File size: 5,252 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
0dec378
219d097
471c590
0dec378
79f1585
 
e3be785
20de417
e3be785
 
2fc432b
0198afd
 
 
 
 
 
 
1a52ee5
f01cd54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f35681
 
2fc432b
 
e3be785
 
f01cd54
 
 
 
e3be785
 
 
 
 
2fc432b
471c590
2fc432b
 
 
e3be785
 
 
 
 
 
 
79f1585
e3be785
165b2f6
3b4ee8c
 
 
 
5e03798
 
2f35681
5e03798
 
 
f01cd54
5e03798
 
 
 
 
 
 
0198afd
5e03798
 
 
 
 
 
 
 
f01cd54
5e03798
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer { visibility: hidden; }"
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"

def enable_lora(lora_add, basemodel): 
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    if seed == -1: 
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    text = str(translator.translate(prompt, 'English')) + "," + lora_word
    client = AsyncInferenceClient()
    image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
    return image, seed

def get_clarity_upscale(prompt, img_path, upscale_factor):
    client = Client("jbilcke-hf/clarity-upscaler")
    result = client.predict(
        img_path,
        prompt,
        "",
        upscale_factor,
        1,
        3,
        3,
        "16",
        "16",
        "epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]",
        "DPM++ 2M Karras",
        1,
        3,
        True,
        3,
        "Hello!!",
        "Hello!!",
        api_name="/predict"
    )
    print(result)
    return result

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscaler_choice):
    model = lora_model
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    image_path = "temp_image.png"
    image.save(image_path)
    
    if process_upscale:
        if upscaler_choice == "FineGrain":
            upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
        elif upscaler_choice == "Upscaler Clarity":
            upscale_image = get_clarity_upscale(prompt, image_path, upscale_factor)
    else:
        upscale_image = image_path
    
    return [image_path, upscale_image]

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
    result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
    return result[1]

css = """
#col-container{
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("Flux Upscaled +LORA")
        with gr.Row():
            with gr.Column(scale=1.5):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=0.8):
                prompt = gr.Textbox(label="Prompt")
                basemodel_choice = gr.Dropdown(label="Base Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Model", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
                process_lora = gr.Checkbox(label="Process LORA", value=True)
                upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
                process_upscale = gr.Checkbox(label="Process Upscale", value=False)
                upscaler_choice = gr.Radio(label="Upscaler", choices=["FineGrain", "Upscaler Clarity"], value="FineGrain")
                
                with gr.Accordion(label="Advanced Options", open=False):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=512)
                    scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
                    seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                    
                submit_btn = gr.Button("Submit", scale=1)
                submit_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[output_res],
                    queue=False
                ).then(
                    fn=gen,
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscaler_choice],
                    outputs=[output_res]
                )
demo.launch()