salomonsky commited on
Commit
f01cd54
·
verified ·
1 Parent(s): 2f35681

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -3
app.py CHANGED
@@ -31,14 +31,42 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
31
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
32
  return image, seed
33
 
34
- async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  model = lora_model
36
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
37
  image_path = "temp_image.png"
38
  image.save(image_path)
39
 
40
  if process_upscale:
41
- upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
 
 
 
42
  else:
43
  upscale_image = image_path
44
 
@@ -69,6 +97,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
69
  process_lora = gr.Checkbox(label="Process LORA", value=True)
70
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
71
  process_upscale = gr.Checkbox(label="Process Upscale", value=False)
 
72
 
73
  with gr.Accordion(label="Advanced Options", open=False):
74
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
@@ -85,7 +114,7 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
85
  queue=False
86
  ).then(
87
  fn=gen,
88
- inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
89
  outputs=[output_res]
90
  )
91
  demo.launch()
 
31
  image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
32
  return image, seed
33
 
34
+ def get_clarity_upscale(prompt, img_path, upscale_factor):
35
+ client = Client("jbilcke-hf/clarity-upscaler")
36
+ result = client.predict(
37
+ img_path,
38
+ prompt,
39
+ "",
40
+ upscale_factor,
41
+ 1,
42
+ 3,
43
+ 3,
44
+ "16",
45
+ "16",
46
+ "epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]",
47
+ "DPM++ 2M Karras",
48
+ 1,
49
+ 3,
50
+ True,
51
+ 3,
52
+ "Hello!!",
53
+ "Hello!!",
54
+ api_name="/predict"
55
+ )
56
+ print(result)
57
+ return result
58
+
59
+ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscaler_choice):
60
  model = lora_model
61
  image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
62
  image_path = "temp_image.png"
63
  image.save(image_path)
64
 
65
  if process_upscale:
66
+ if upscaler_choice == "FineGrain":
67
+ upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
68
+ elif upscaler_choice == "Upscaler Clarity":
69
+ upscale_image = get_clarity_upscale(prompt, image_path, upscale_factor)
70
  else:
71
  upscale_image = image_path
72
 
 
97
  process_lora = gr.Checkbox(label="Process LORA", value=True)
98
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 4, 8], value=2, scale=2)
99
  process_upscale = gr.Checkbox(label="Process Upscale", value=False)
100
+ upscaler_choice = gr.Radio(label="Upscaler", choices=["FineGrain", "Upscaler Clarity"], value="FineGrain")
101
 
102
  with gr.Accordion(label="Advanced Options", open=False):
103
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=512)
 
114
  queue=False
115
  ).then(
116
  fn=gen,
117
+ inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscaler_choice],
118
  outputs=[output_res]
119
  )
120
  demo.launch()