File size: 1,598 Bytes
8a4966f 316cd63 67db5f1 fcad9bd 8a4966f d14a256 eb1f860 4bf6a6a eb1f860 d14a256 5a8af87 8a4966f d13438a 918917d cc4670d 918917d 4b1a293 918917d 82627a9 484c23b 67db5f1 484c23b 69e98ce 8a4966f f31f0f6 d13438a 8a4966f f39f1d3 82627a9 8a4966f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import numpy as np
from PIL import Image
import requests
import hopsworks
import joblib
import os
from datetime import datetime, timedelta
project = hopsworks.login(api_key_value="B8TDkmcSyPyWFM2o.YuXEbXM7MUFk5gdBXFXsbMz24uZipqY4BttbZ9wIoZ0cn9vQd4bSWgj57vDGXqdh")
mr = project.get_model_registry()
model = mr.get_model("air_model_3", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/air_model3.pkl")
def forecast():
fs = project.get_feature_store()
feature_view = fs.get_feature_view(
name = 'miami_data_air_quality_fv',
version = 1
)
train_data = feature_view.get_training_data(1)[0:7]
train_data = train_data.drop(labels = 'city_y',axis =1)
train_data = train_data.rename(columns = {'city_x':'city'})
train_data = train_data.sort_values(by="date", ascending=True).reset_index(drop=True)
train_data["aqi_next_day"] = train_data.groupby('city')['aqi'].shift(1)
X = train_data.drop(columns=["date"]).fillna(0)
y = X.pop("aqi_next_day")
X = X.drop(columns =['city','conditions']).fillna(0)
today_data = X[1:2]
y = model.predict(today_data)
res = int(y[0])
return res
date_today = datetime.now()
day = timedelta(days = 1)
date_today = date_today + day
date_today = date_today.strftime("%Y-%m-%d")
output_label = date_today + " 's air quality is "
demo = gr.Interface(
fn=forecast,
title="Air Quality Prediction",
description="Get aqi value",
allow_flagging="never",
inputs=[],
outputs=gr.Textbox(label=output_label))
demo.launch() |