howlbz commited on
Commit
d13438a
·
1 Parent(s): 5b729e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -29
app.py CHANGED
@@ -10,42 +10,22 @@ project = hopsworks.login(api_key_value="0rdWXlLgEd3mkGOg.iRZ7TtAkWGPlJHNQcAEph6
10
  fs = project.get_feature_store()
11
 
12
  mr = project.get_model_registry()
13
- model = mr.get_model("titanic_modal", version=1)
14
  model_dir = model.download()
15
- model = joblib.load(model_dir + "/titanic_model.pkl")
16
 
17
 
18
- def titanic(Pclass, Sex, Age, SibSp):
19
- input_list = []
20
- input_list.append(Pclass)
21
- input_list.append(Sex)
22
- input_list.append(Age)
23
- input_list.append(SibSp)
24
- # 'res' is a list of predictions returned as the label.
25
- res = model.predict(np.asarray(input_list).reshape(1, -1))
26
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
27
- # the first element.
28
- # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
29
- # img = Image.open(requests.get(flower_url, stream=True).raw)
30
- # return img
31
- if (res[0] == 0):
32
- result = "I'm sorry, the person is dead"
33
- else:
34
- result = "Awesome, the person is survived!!!!!!"
35
- return result
36
-
37
 
38
  demo = gr.Interface(
39
  fn=titanic,
40
- title="Titanic Predictive Analytics",
41
- description="Experiment with Passenger class/Sex/Age/SibSp to predict if the person is survived or not.",
42
  allow_flagging="never",
43
- inputs=[
44
- gr.inputs.Number(default=1.0, label="Pclass (Flight class 1/2/3)"),
45
- gr.inputs.Number(default=1.0, label="Sex (male=1/female=2)"),
46
- gr.inputs.Number(default=1.0, label="Age (in years)"),
47
- gr.inputs.Number(default=1.0, label="SibSp (number of siblings)"),
48
- ],
49
  outputs=gr.Textbox(label="Result: "))
50
 
51
  demo.launch()
 
10
  fs = project.get_feature_store()
11
 
12
  mr = project.get_model_registry()
13
+ model = mr.get_model("xgboost_model", version=1)
14
  model_dir = model.download()
15
+ model = joblib.load(model_dir + "/model.pkl")
16
 
17
 
18
+ def forecast():
19
+ x = 0
20
+ #res = model.predict(x)
21
+
22
+ return 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  demo = gr.Interface(
25
  fn=titanic,
26
+ title="Air Quality Prediction",
27
+ description="Get aqi value",
28
  allow_flagging="never",
 
 
 
 
 
 
29
  outputs=gr.Textbox(label="Result: "))
30
 
31
  demo.launch()