Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os, gc | |
| import torch | |
| from transformers import CLIPImageProcessor | |
| from huggingface_hub import hf_hub_download | |
| ctx_limit = 3500 | |
| num_image_embeddings = 4096 | |
| title = 'ViusualRWKV-v5' | |
| rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth" | |
| vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth" | |
| vision_tower_name = 'openai/clip-vit-large-patch14-336' | |
| os.environ["RWKV_JIT_ON"] = '1' | |
| os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) | |
| from modeling_vision import VisionEncoder, VisionEncoderConfig | |
| from modeling_rwkv import RWKV | |
| model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path) | |
| model = RWKV(model=model_path, strategy='cpu fp32') | |
| from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
| pipeline = PIPELINE(model, "rwkv_vocab_v20230424") | |
| ########################################################################## | |
| config = VisionEncoderConfig(n_embd=model.args.n_embd, | |
| vision_tower_name=vision_tower_name, | |
| grid_size=-1) | |
| visual_encoder = VisionEncoder(config) | |
| vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path) | |
| vision_state_dict = torch.load(vision_local_path, map_location='cpu') | |
| visual_encoder.load_state_dict(vision_state_dict) | |
| image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name) | |
| ########################################################################## | |
| def generate_prompt(instruction): | |
| instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') | |
| return f"\n{instruction}\n\nAssistant:" | |
| def generate( | |
| ctx, | |
| image_features, | |
| token_count=200, | |
| temperature=1.0, | |
| top_p=0.7, | |
| presencePenalty = 0.1, | |
| countPenalty = 0.1, | |
| ): | |
| args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
| alpha_frequency = countPenalty, | |
| alpha_presence = presencePenalty, | |
| token_ban = [], # ban the generation of some tokens | |
| token_stop = [0]) # stop generation whenever you see any token here | |
| ctx = ctx.strip() | |
| all_tokens = [] | |
| out_last = 0 | |
| out_str = '' | |
| occurrence = {} | |
| for i in range(int(token_count)): | |
| if i == 0: | |
| input_ids = pipeline.encode(ctx) | |
| text_embs = model.w['emb.weight'][input_ids] | |
| input_embs = torch.cat((image_features, text_embs), dim=0)[-ctx_limit:] | |
| out, state = model.forward(embs=input_embs, state=None) | |
| else: | |
| input_ids = [token] | |
| out, state = model.forward(input_ids, state) | |
| for n in occurrence: | |
| out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
| token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
| if token in args.token_stop: | |
| break | |
| all_tokens += [token] | |
| for xxx in occurrence: | |
| occurrence[xxx] *= 0.996 | |
| if token not in occurrence: | |
| occurrence[token] = 1 | |
| else: | |
| occurrence[token] += 1 | |
| tmp = pipeline.decode(all_tokens[out_last:]) | |
| if '\ufffd' not in tmp: | |
| out_str += tmp | |
| yield out_str.strip() | |
| out_last = i + 1 | |
| del out | |
| del state | |
| gc.collect() | |
| yield out_str.strip() | |
| ########################################################################## | |
| cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
| examples = [ | |
| [ | |
| f"{cur_dir}/examples_extreme_ironing.jpg", | |
| "What is unusual about this image?", | |
| ], | |
| [ | |
| f"{cur_dir}/examples_waterview.jpg", | |
| "What are the things I should be cautious about when I visit here?", | |
| ] | |
| ] | |
| def chatbot(image, question): | |
| image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values'] | |
| image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D] | |
| input_text = generate_prompt(question) | |
| for output in generate(input_text, image_features): | |
| yield output | |
| with gr.Blocks(title=title) as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type='pil', label="Image") | |
| with gr.Column(): | |
| prompt = gr.Textbox(lines=5, label="Prompt", | |
| value="Please upload an image and ask a question.") | |
| with gr.Row(): | |
| submit = gr.Button("Submit", variant="primary") | |
| clear = gr.Button("Clear", variant="secondary") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Output", lines=7) | |
| data = gr.Dataset(components=[image, prompt], samples=examples, label="Examples", headers=["Image", "Prompt"]) | |
| submit.click(chatbot, [image, prompt], [output]) | |
| clear.click(lambda: None, [], [output]) | |
| data.click(lambda x: x, [data], [image, prompt]) | |
| demo.queue(max_size=10) | |
| demo.launch(share=False) |