Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						786e086
	
1
								Parent(s):
							
							c71bb52
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,32 +1,34 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import os, gc
         | 
| 3 | 
            -
             | 
| 4 | 
             
            from transformers import CLIPImageProcessor
         | 
| 5 | 
             
            from huggingface_hub import hf_hub_download
         | 
| 6 | 
            -
            DEFAULT_IMAGE_TOKEN = "<image>"
         | 
| 7 | 
            -
             | 
| 8 |  | 
| 9 | 
             
            ctx_limit = 3500
         | 
| 10 | 
             
            num_image_embeddings = 4096
         | 
| 11 | 
            -
            title =  | 
|  | |
|  | |
| 12 | 
             
            vision_tower_name = 'openai/clip-vit-large-patch14-336'
         | 
| 13 |  | 
| 14 | 
             
            os.environ["RWKV_JIT_ON"] = '1'
         | 
| 15 | 
             
            os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
         | 
| 16 |  | 
| 17 | 
            -
            from  | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
|  | |
| 20 | 
             
            from rwkv.utils import PIPELINE, PIPELINE_ARGS
         | 
| 21 | 
             
            pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
         | 
| 22 |  | 
| 23 | 
             
            ##########################################################################
         | 
| 24 | 
            -
             | 
| 25 | 
            -
                                       num_image_embeddings=num_image_embeddings)
         | 
| 26 | 
            -
            config = VisualEncoderConfig(n_embd=model.args.n_embd, 
         | 
| 27 | 
             
                                         vision_tower_name=vision_tower_name, 
         | 
| 28 | 
             
                                         grid_size=-1)
         | 
| 29 | 
            -
            visual_encoder =  | 
|  | |
|  | |
|  | |
| 30 | 
             
            image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
         | 
| 31 | 
             
            ##########################################################################
         | 
| 32 | 
             
            def generate_prompt(instruction):
         | 
| @@ -35,7 +37,7 @@ def generate_prompt(instruction): | |
| 35 |  | 
| 36 | 
             
            def generate(
         | 
| 37 | 
             
                ctx,
         | 
| 38 | 
            -
                 | 
| 39 | 
             
                token_count=200,
         | 
| 40 | 
             
                temperature=1.0,
         | 
| 41 | 
             
                top_p=0.7,
         | 
| @@ -52,14 +54,15 @@ def generate( | |
| 52 | 
             
                out_last = 0
         | 
| 53 | 
             
                out_str = ''
         | 
| 54 | 
             
                occurrence = {}
         | 
| 55 | 
            -
                state = None
         | 
| 56 | 
            -
                print(model.w["emb.weight"].shape)
         | 
| 57 | 
             
                for i in range(int(token_count)):
         | 
| 58 | 
             
                    if i == 0:
         | 
| 59 | 
            -
                        input_ids =  | 
|  | |
|  | |
|  | |
| 60 | 
             
                    else:
         | 
| 61 | 
             
                        input_ids = [token]
         | 
| 62 | 
            -
             | 
| 63 | 
             
                    for n in occurrence:
         | 
| 64 | 
             
                        out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
         | 
| 65 |  | 
| @@ -100,14 +103,9 @@ examples = [ | |
| 100 | 
             
            ]
         | 
| 101 | 
             
            def chatbot(image, question):
         | 
| 102 | 
             
                image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
         | 
| 103 | 
            -
                image_features = visual_encoder.encode_images(image.unsqueeze(0))
         | 
| 104 | 
            -
                emb_mixer.set_image_embeddings(image_features.squeeze(0))
         | 
| 105 | 
            -
                model.update_emb_weight(emb_mixer.get_input_embeddings())
         | 
| 106 | 
            -
                print(emb_mixer.get_input_embeddings().shape)
         | 
| 107 | 
            -
                print(model.w["emb.weight"].shape)
         | 
| 108 | 
            -
                image_ids = [i for i in range(emb_mixer.image_start_index, emb_mixer.image_start_index + len(image_features))]
         | 
| 109 | 
             
                input_text = generate_prompt(question)
         | 
| 110 | 
            -
                for output in generate(input_text,  | 
| 111 | 
             
                    yield output
         | 
| 112 |  | 
| 113 | 
             
            with gr.Blocks(title=title) as demo:
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import os, gc
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
             
            from transformers import CLIPImageProcessor
         | 
| 5 | 
             
            from huggingface_hub import hf_hub_download
         | 
|  | |
|  | |
| 6 |  | 
| 7 | 
             
            ctx_limit = 3500
         | 
| 8 | 
             
            num_image_embeddings = 4096
         | 
| 9 | 
            +
            title = 'ViusualRWKV-v5'
         | 
| 10 | 
            +
            rwkv_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_rwkv.pth"
         | 
| 11 | 
            +
            vision_remote_path = "rwkv1b5-vitl336p14-577token_mix665k_visual.pth"
         | 
| 12 | 
             
            vision_tower_name = 'openai/clip-vit-large-patch14-336'
         | 
| 13 |  | 
| 14 | 
             
            os.environ["RWKV_JIT_ON"] = '1'
         | 
| 15 | 
             
            os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
         | 
| 16 |  | 
| 17 | 
            +
            from modeling_vision import VisionEncoder, VisionEncoderConfig
         | 
| 18 | 
            +
            from modeling_rwkv import RWKV
         | 
| 19 | 
            +
            model_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=rwkv_remote_path)
         | 
| 20 | 
            +
            model = RWKV(model=model_path, strategy='cpu fp32')
         | 
| 21 | 
             
            from rwkv.utils import PIPELINE, PIPELINE_ARGS
         | 
| 22 | 
             
            pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
         | 
| 23 |  | 
| 24 | 
             
            ##########################################################################
         | 
| 25 | 
            +
            config = VisionEncoderConfig(n_embd=model.args.n_embd, 
         | 
|  | |
|  | |
| 26 | 
             
                                         vision_tower_name=vision_tower_name, 
         | 
| 27 | 
             
                                         grid_size=-1)
         | 
| 28 | 
            +
            visual_encoder = VisionEncoder(config)
         | 
| 29 | 
            +
            vision_local_path = hf_hub_download(repo_id="howard-hou/visualrwkv-5", filename=vision_remote_path)
         | 
| 30 | 
            +
            vision_state_dict = torch.load(vision_local_path, map_location='cpu')
         | 
| 31 | 
            +
            visual_encoder.load_state_dict(vision_state_dict)
         | 
| 32 | 
             
            image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
         | 
| 33 | 
             
            ##########################################################################
         | 
| 34 | 
             
            def generate_prompt(instruction):
         | 
|  | |
| 37 |  | 
| 38 | 
             
            def generate(
         | 
| 39 | 
             
                ctx,
         | 
| 40 | 
            +
                image_features,
         | 
| 41 | 
             
                token_count=200,
         | 
| 42 | 
             
                temperature=1.0,
         | 
| 43 | 
             
                top_p=0.7,
         | 
|  | |
| 54 | 
             
                out_last = 0
         | 
| 55 | 
             
                out_str = ''
         | 
| 56 | 
             
                occurrence = {}
         | 
|  | |
|  | |
| 57 | 
             
                for i in range(int(token_count)):
         | 
| 58 | 
             
                    if i == 0:
         | 
| 59 | 
            +
                        input_ids = pipeline.encode(ctx)
         | 
| 60 | 
            +
                        text_embs = model.w['emb.weight'][input_ids]
         | 
| 61 | 
            +
                        input_embs = torch.cat((image_features, text_embs), dim=0)[-ctx_limit:]
         | 
| 62 | 
            +
                        out, state = model.forward(embs=input_embs, state=None)
         | 
| 63 | 
             
                    else:
         | 
| 64 | 
             
                        input_ids = [token]
         | 
| 65 | 
            +
                        out, state = model.forward(input_ids, state)
         | 
| 66 | 
             
                    for n in occurrence:
         | 
| 67 | 
             
                        out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
         | 
| 68 |  | 
|  | |
| 103 | 
             
            ]
         | 
| 104 | 
             
            def chatbot(image, question):
         | 
| 105 | 
             
                image = image_processor(images=image.convert('RGB'), return_tensors='pt')['pixel_values']
         | 
| 106 | 
            +
                image_features = visual_encoder.encode_images(image.unsqueeze(0)).squeeze(0) # [L, D]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 107 | 
             
                input_text = generate_prompt(question)
         | 
| 108 | 
            +
                for output in generate(input_text, image_features):
         | 
| 109 | 
             
                    yield output
         | 
| 110 |  | 
| 111 | 
             
            with gr.Blocks(title=title) as demo:
         | 
