File size: 9,388 Bytes
597e812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce48e72
597e812
 
 
 
 
 
 
 
 
 
ce48e72
 
 
 
 
597e812
 
 
 
 
 
 
ce48e72
597e812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from auralis import TTS, TTSRequest, TTSOutput, setup_logger
from gradio import File, Files, Slider
import torch
from tts_ui.utils import (
    calculate_byte_size,
    split_text_into_chunks,
    tmp_dir,
    extract_text_from_epub,
    text_from_file,
    convert_audio,
)
from tts_ui.utils.doc_processor import DocumentProcessor
import hashlib
import torchaudio
import time
from pathlib import Path
import os

# Loading the TTS engine first and assign it to the class.
# This looks ugly, but it works
logger = setup_logger(__file__)

tts = TTS()
model_path = "AstraMindAI/xttsv2"  # change this if you have a different model
gpt_model = "AstraMindAI/xtts2-gpt"

try:
    cpu_only = torch.cuda.is_available()
    if cpu_only:
        os.environ["VLLM_NO_GPU"] = "1"
        os.environ["TRITON_CPU_ONLY"] = "1"

    tts: TTS = tts.from_pretrained(
        model_name_or_path=model_path,
        gpt_model=gpt_model,
        enforce_eager=False,
        max_seq_len_to_capture=4096,  # Match WSL2 page size
        scheduler_max_concurrency=4,
    )

    logger.info(f"Successfully loaded model {model_path}")
except Exception as e:
    error_msg = f"Failed to load model: {e}."
    logger.error(error_msg)
    raise Exception(error_msg)


class AuralisTTSEngine:
    def __init__(self):
        self.logger = logger
        self.tts: TTS = tts
        self.model_path: str = model_path
        self.gpt_model: str = gpt_model
        self.tmp_dir: Path = tmp_dir
        self.doc_processor = DocumentProcessor

    def process_text_and_generate(
        self,
        input_text: str,
        ref_audio_files: str | list[str] | bytes | list[bytes],
        speed: float,
        enhance_speech: bool,
        temperature: float,
        top_p: float,
        top_k: float,
        repetition_penalty: float,
        language: str = "auto",
        *args,
    ):
        """Process text and generate audio."""
        log_messages: str = ""
        if not ref_audio_files:
            log_messages += "Please provide at least one reference audio!\n"
            return None, log_messages

        input_size = calculate_byte_size(input_text)

        # use the chunking process if the text is too large
        if input_size > 45000:
            self.logger.info(
                f"Found {input_size} bytes of text. Switching to chunk mode."
            )
            # todo: this function has a couple of overlapping functions as normal processing. I need to optimize the code
            return self._process_large_text(
                input_text,
                ref_audio_files,
                speed,
                enhance_speech,
                temperature,
                top_p,
                top_k,
                repetition_penalty,
                language,
            )
        else:
            try:
                with torch.no_grad():
                    # clone voices from all file paths (shorten them)
                    base64_voices: str | list[str] | bytes | list[bytes] = (
                        ref_audio_files[:5]
                    )

                    request = TTSRequest(
                        text=input_text,
                        speaker_files=base64_voices,
                        stream=False,
                        enhance_speech=enhance_speech,
                        temperature=temperature,
                        top_p=top_p,
                        top_k=top_k,
                        repetition_penalty=repetition_penalty,
                        language=language,
                    )

                    output: TTSOutput = self.tts.generate_speech(request)

                    if output:
                        if speed != 1:
                            output.change_speed(speed)
                        log_messages += f"βœ… Successfully Generated audio\n"
                        self.logger.info(log_messages)
                        # return the sample rate and the audio file as a byte array
                        return (
                            output.sample_rate,
                            convert_audio(output.array),
                        ), log_messages

                    else:
                        log_messages += "❌ No output was generated. Check that the model was correctly loaded\n"
                        return None, log_messages
            except Exception as e:
                self.logger.error(f"Error: {e}")
                log_messages += f"❌ An Error occured: {e}\n"
                return None, log_messages

    def _process_large_text(
        self,
        input_full_text: str,
        ref_audio_files: str | list[str] | bytes | list[bytes],
        speed: float,
        enhance_speech: bool,
        temperature: float,
        top_p: float,
        top_k: float,
        repetition_penalty: float,
        language: str = "auto",
    ):
        """Process text in chunks and combine results"""
        log_messages: str = ""

        if not ref_audio_files:
            log_messages += "Please provide at least one reference audio!\n"
            return None, log_messages

        base64_voices: str | list[str] | bytes | list[bytes] = ref_audio_files[:5]

        chunks: list[str] = split_text_into_chunks(input_full_text)
        print(f"Created {len(chunks)} chunks")

        audio_segments: list[TTSOutput] = []
        for idx, chunk in enumerate(chunks):
            request = TTSRequest(
                text=chunk,
                speaker_files=base64_voices,
                stream=False,
                enhance_speech=enhance_speech,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                repetition_penalty=repetition_penalty,
                language=language,
            )

            try:
                with torch.no_grad():
                    audio = self.tts.generate_speech(request)
                    audio_segments.append(audio)
                    self.logger.info(f"Processed {idx + 1} chunks out of {len(chunks)}")

            except Exception as e:
                log_messages += f"❌ Chunk processing failed: {e}\n"
                return None, log_messages

        if len(audio_segments) <= 0:
            log_messages += f"❌ Chunk processing failed. Chunk size: {len(chunks)}\n"
            return None, log_messages

        combined_output: TTSOutput = TTSOutput.combine_outputs(audio_segments)

        if speed != 1:
            combined_output.change_speed(speed)

        log_messages += f"βœ… Successfully Generated audio\n"
        # return combined_output
        return (
            combined_output.sample_rate,
            convert_audio(combined_output.array),
        ), log_messages

    def process_file_and_generate(
        self,
        file_input: File,
        ref_audio_files_file: Files,
        speed_file: Slider,
        enhance_speech_file,
        temperature_file,
        top_p_file,
        top_k_file,
        repetition_penalty_file,
        language_file,
    ):
        # todo: refactor this to use the document processor object
        if file_input:
            file_extension: str = Path(file_input.name).suffix

            match file_extension:
                case ".epub":
                    input_text: str = extract_text_from_epub(file_input.name)
                case ".txt" | ".md":
                    input_text = text_from_file(file_input.name)
                case _:
                    return (
                        None,
                        "Unsupported file format, it needs to be either .epub or .txt",
                    )

            return self._process_large_text(
                input_text,
                ref_audio_files_file,
                speed_file,
                enhance_speech_file,
                temperature_file,
                top_p_file,
                top_k_file,
                repetition_penalty_file,
                language_file,
            )
        else:
            return None, "Please provide an .epub or .txt file!"

    def process_mic_and_generate(
        self,
        input_text_mic,
        mic_ref_audio,
        speed_mic,
        enhance_speech_mic,
        temperature_mic,
        top_p_mic,
        top_k_mic,
        repetition_penalty_mic,
        language_mic,
    ):
        if mic_ref_audio:
            data: bytes = str(time.time()).encode("utf-8")
            hash: str = hashlib.sha1(data).hexdigest()[:10]
            output_path = self.tmp_dir / (f"mic_{hash}.wav")

            torch_audio: torch.Tensor = torch.from_numpy(mic_ref_audio[1].astype(float))
            try:
                torchaudio.save(
                    str(output_path), torch_audio.unsqueeze(0), mic_ref_audio[0]
                )
                return self.process_text_and_generate(
                    input_text_mic,
                    [Path(output_path)],
                    speed_mic,
                    enhance_speech_mic,
                    temperature_mic,
                    top_p_mic,
                    top_k_mic,
                    repetition_penalty_mic,
                    language_mic,
                )
            except Exception as e:
                self.logger.error(f"Error saving audio file: {e}")
                return None, f"Error saving audio file: {e}"
        else:
            return None, "Please record an audio!"