Spaces:
Build error
Build error
add base proj
Browse files- app.py +11 -5
- pyproject.toml +24 -0
- requirements.txt +746 -0
- tts_ui/__init__.py +0 -0
- tts_ui/tts/__init__.py +0 -0
- tts_ui/tts/auralis_tts_engine.py +271 -0
- tts_ui/ui/__init__.py +255 -0
- tts_ui/utils/__init__.py +182 -0
- tts_ui/utils/doc_processor.py +48 -0
- uv.lock +0 -0
app.py
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tts_ui.tts.auralis_tts_engine import AuralisTTSEngine
|
2 |
+
from tts_ui.ui import build_gradio_ui
|
3 |
|
|
|
|
|
4 |
|
5 |
+
def main():
|
6 |
+
tts_engine = AuralisTTSEngine()
|
7 |
+
ui = build_gradio_ui(tts_engine)
|
8 |
+
ui.launch(debug=True)
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
# asyncio.run(main())
|
13 |
+
main()
|
pyproject.toml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "auralis-tts"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"auralis>=0.2.8.post2",
|
9 |
+
"bs4>=0.0.2",
|
10 |
+
"bunkai>=1.5.7",
|
11 |
+
"gradio>=5.17.1",
|
12 |
+
"jaconv>=0.4.0",
|
13 |
+
"langchain-text-splitters>=0.3.6",
|
14 |
+
"markdown>=3.7",
|
15 |
+
"nest-asyncio>=1.6.0",
|
16 |
+
"pdfplumber>=0.11.5",
|
17 |
+
"sudachidict-core>=20250129",
|
18 |
+
"sudachipy>=0.6.10",
|
19 |
+
"torch>=2.5.1",
|
20 |
+
"torchaudio>=2.5.1",
|
21 |
+
"torchvision>=0.20.1",
|
22 |
+
"unidic>=1.1.0",
|
23 |
+
"yakinori>=0.1.2",
|
24 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile --output-file requirements.txt pyproject.toml
|
3 |
+
aiofiles==23.2.1
|
4 |
+
# via
|
5 |
+
# auralis
|
6 |
+
# gradio
|
7 |
+
aiohappyeyeballs==2.4.6
|
8 |
+
# via aiohttp
|
9 |
+
aiohttp==3.11.12
|
10 |
+
# via
|
11 |
+
# datasets
|
12 |
+
# fsspec
|
13 |
+
# vllm
|
14 |
+
aiosignal==1.3.2
|
15 |
+
# via
|
16 |
+
# aiohttp
|
17 |
+
# ray
|
18 |
+
annotated-types==0.7.0
|
19 |
+
# via pydantic
|
20 |
+
anyio==4.8.0
|
21 |
+
# via
|
22 |
+
# gradio
|
23 |
+
# httpx
|
24 |
+
# openai
|
25 |
+
# starlette
|
26 |
+
# watchfiles
|
27 |
+
asttokens==3.0.0
|
28 |
+
# via stack-data
|
29 |
+
async-timeout==5.0.1
|
30 |
+
# via aiohttp
|
31 |
+
attrs==25.1.0
|
32 |
+
# via
|
33 |
+
# aiohttp
|
34 |
+
# jsonschema
|
35 |
+
# referencing
|
36 |
+
audioread==3.0.1
|
37 |
+
# via librosa
|
38 |
+
auralis==0.2.8.post2
|
39 |
+
# via auralis-tts (pyproject.toml)
|
40 |
+
beautifulsoup4==4.13.3
|
41 |
+
# via
|
42 |
+
# auralis
|
43 |
+
# bs4
|
44 |
+
blis==0.7.11
|
45 |
+
# via thinc
|
46 |
+
bs4==0.0.2
|
47 |
+
# via auralis-tts (pyproject.toml)
|
48 |
+
bunkai==1.5.7
|
49 |
+
# via auralis-tts (pyproject.toml)
|
50 |
+
cachetools==5.5.2
|
51 |
+
# via auralis
|
52 |
+
catalogue==2.0.10
|
53 |
+
# via
|
54 |
+
# spacy
|
55 |
+
# srsly
|
56 |
+
# thinc
|
57 |
+
certifi==2025.1.31
|
58 |
+
# via
|
59 |
+
# httpcore
|
60 |
+
# httpx
|
61 |
+
# requests
|
62 |
+
cffi==1.17.1
|
63 |
+
# via
|
64 |
+
# cryptography
|
65 |
+
# sounddevice
|
66 |
+
# soundfile
|
67 |
+
charset-normalizer==3.4.1
|
68 |
+
# via
|
69 |
+
# pdfminer-six
|
70 |
+
# requests
|
71 |
+
click==8.1.8
|
72 |
+
# via
|
73 |
+
# ray
|
74 |
+
# typer
|
75 |
+
# uvicorn
|
76 |
+
cloudpathlib==0.20.0
|
77 |
+
# via weasel
|
78 |
+
cloudpickle==3.1.1
|
79 |
+
# via outlines
|
80 |
+
colorama==0.4.6
|
81 |
+
# via auralis
|
82 |
+
compressed-tensors==0.8.0
|
83 |
+
# via vllm
|
84 |
+
confection==0.1.5
|
85 |
+
# via
|
86 |
+
# thinc
|
87 |
+
# weasel
|
88 |
+
cryptography==44.0.1
|
89 |
+
# via pdfminer-six
|
90 |
+
cutlet==0.5.0
|
91 |
+
# via auralis
|
92 |
+
cymem==2.0.11
|
93 |
+
# via
|
94 |
+
# preshed
|
95 |
+
# spacy
|
96 |
+
# thinc
|
97 |
+
dataclasses-json==0.6.7
|
98 |
+
# via bunkai
|
99 |
+
datasets==2.14.4
|
100 |
+
# via outlines
|
101 |
+
decorator==5.2.1
|
102 |
+
# via
|
103 |
+
# ipython
|
104 |
+
# librosa
|
105 |
+
dill==0.3.7
|
106 |
+
# via
|
107 |
+
# datasets
|
108 |
+
# multiprocess
|
109 |
+
diskcache==5.6.3
|
110 |
+
# via outlines
|
111 |
+
distro==1.9.0
|
112 |
+
# via openai
|
113 |
+
docopt==0.6.2
|
114 |
+
# via num2words
|
115 |
+
ebooklib==0.18
|
116 |
+
# via auralis
|
117 |
+
einops==0.8.1
|
118 |
+
# via
|
119 |
+
# auralis
|
120 |
+
# vllm
|
121 |
+
emoji==2.14.1
|
122 |
+
# via bunkai
|
123 |
+
emojis==0.7.0
|
124 |
+
# via bunkai
|
125 |
+
exceptiongroup==1.2.2
|
126 |
+
# via
|
127 |
+
# anyio
|
128 |
+
# ipython
|
129 |
+
# pytest
|
130 |
+
executing==2.2.0
|
131 |
+
# via stack-data
|
132 |
+
fastapi==0.115.8
|
133 |
+
# via
|
134 |
+
# gradio
|
135 |
+
# vllm
|
136 |
+
ffmpeg==1.4
|
137 |
+
# via auralis
|
138 |
+
ffmpy==0.5.0
|
139 |
+
# via gradio
|
140 |
+
filelock==3.17.0
|
141 |
+
# via
|
142 |
+
# huggingface-hub
|
143 |
+
# ray
|
144 |
+
# torch
|
145 |
+
# transformers
|
146 |
+
# vllm
|
147 |
+
frozenlist==1.5.0
|
148 |
+
# via
|
149 |
+
# aiohttp
|
150 |
+
# aiosignal
|
151 |
+
# ray
|
152 |
+
fsspec==2025.2.0
|
153 |
+
# via
|
154 |
+
# auralis
|
155 |
+
# datasets
|
156 |
+
# gradio-client
|
157 |
+
# huggingface-hub
|
158 |
+
# torch
|
159 |
+
fugashi==1.4.0
|
160 |
+
# via cutlet
|
161 |
+
future==1.0.0
|
162 |
+
# via pyloudnorm
|
163 |
+
gguf==0.10.0
|
164 |
+
# via vllm
|
165 |
+
gradio==5.17.1
|
166 |
+
# via auralis-tts (pyproject.toml)
|
167 |
+
gradio-client==1.7.1
|
168 |
+
# via gradio
|
169 |
+
h11==0.14.0
|
170 |
+
# via
|
171 |
+
# httpcore
|
172 |
+
# uvicorn
|
173 |
+
hangul-romanize==0.1.0
|
174 |
+
# via auralis
|
175 |
+
httpcore==1.0.7
|
176 |
+
# via httpx
|
177 |
+
httptools==0.6.4
|
178 |
+
# via uvicorn
|
179 |
+
httpx==0.28.1
|
180 |
+
# via
|
181 |
+
# gradio
|
182 |
+
# gradio-client
|
183 |
+
# langsmith
|
184 |
+
# openai
|
185 |
+
# safehttpx
|
186 |
+
huggingface-hub==0.29.1
|
187 |
+
# via
|
188 |
+
# auralis
|
189 |
+
# datasets
|
190 |
+
# gradio
|
191 |
+
# gradio-client
|
192 |
+
# tokenizers
|
193 |
+
# transformers
|
194 |
+
idna==3.10
|
195 |
+
# via
|
196 |
+
# anyio
|
197 |
+
# httpx
|
198 |
+
# requests
|
199 |
+
# yarl
|
200 |
+
importlib-metadata==8.6.1
|
201 |
+
# via vllm
|
202 |
+
iniconfig==2.0.0
|
203 |
+
# via pytest
|
204 |
+
interegular==0.3.3
|
205 |
+
# via
|
206 |
+
# lm-format-enforcer
|
207 |
+
# outlines
|
208 |
+
ipython==8.32.0
|
209 |
+
# via auralis
|
210 |
+
jaconv==0.4.0
|
211 |
+
# via
|
212 |
+
# auralis-tts (pyproject.toml)
|
213 |
+
# cutlet
|
214 |
+
# yakinori
|
215 |
+
janome==0.5.0
|
216 |
+
# via bunkai
|
217 |
+
jedi==0.19.2
|
218 |
+
# via ipython
|
219 |
+
jinja2==3.1.5
|
220 |
+
# via
|
221 |
+
# gradio
|
222 |
+
# outlines
|
223 |
+
# spacy
|
224 |
+
# torch
|
225 |
+
jiter==0.8.2
|
226 |
+
# via openai
|
227 |
+
joblib==1.4.2
|
228 |
+
# via
|
229 |
+
# librosa
|
230 |
+
# scikit-learn
|
231 |
+
jsonpatch==1.33
|
232 |
+
# via langchain-core
|
233 |
+
jsonpointer==3.0.0
|
234 |
+
# via jsonpatch
|
235 |
+
jsonschema==4.23.0
|
236 |
+
# via
|
237 |
+
# mistral-common
|
238 |
+
# outlines
|
239 |
+
# ray
|
240 |
+
jsonschema-specifications==2024.10.1
|
241 |
+
# via jsonschema
|
242 |
+
langchain-core==0.3.37
|
243 |
+
# via langchain-text-splitters
|
244 |
+
langchain-text-splitters==0.3.6
|
245 |
+
# via auralis-tts (pyproject.toml)
|
246 |
+
langcodes==3.5.0
|
247 |
+
# via spacy
|
248 |
+
langid==1.1.6
|
249 |
+
# via auralis
|
250 |
+
langsmith==0.3.10
|
251 |
+
# via langchain-core
|
252 |
+
language-data==1.3.0
|
253 |
+
# via langcodes
|
254 |
+
lark==1.2.2
|
255 |
+
# via outlines
|
256 |
+
lazy-loader==0.4
|
257 |
+
# via librosa
|
258 |
+
librosa==0.10.2.post1
|
259 |
+
# via auralis
|
260 |
+
llvmlite==0.44.0
|
261 |
+
# via numba
|
262 |
+
lm-format-enforcer==0.10.10
|
263 |
+
# via vllm
|
264 |
+
lxml==5.3.1
|
265 |
+
# via ebooklib
|
266 |
+
marisa-trie==1.2.1
|
267 |
+
# via language-data
|
268 |
+
markdown==3.7
|
269 |
+
# via auralis-tts (pyproject.toml)
|
270 |
+
markdown-it-py==3.0.0
|
271 |
+
# via rich
|
272 |
+
markupsafe==2.1.5
|
273 |
+
# via
|
274 |
+
# gradio
|
275 |
+
# jinja2
|
276 |
+
marshmallow==3.26.1
|
277 |
+
# via dataclasses-json
|
278 |
+
matplotlib-inline==0.1.7
|
279 |
+
# via ipython
|
280 |
+
mdurl==0.1.2
|
281 |
+
# via markdown-it-py
|
282 |
+
mecab-python3==1.0.10
|
283 |
+
# via yakinori
|
284 |
+
mistral-common==1.5.3
|
285 |
+
# via vllm
|
286 |
+
mojimoji==0.0.13
|
287 |
+
# via cutlet
|
288 |
+
more-itertools==10.6.0
|
289 |
+
# via bunkai
|
290 |
+
mpmath==1.3.0
|
291 |
+
# via sympy
|
292 |
+
msgpack==1.1.0
|
293 |
+
# via
|
294 |
+
# librosa
|
295 |
+
# ray
|
296 |
+
msgspec==0.19.0
|
297 |
+
# via vllm
|
298 |
+
multidict==6.1.0
|
299 |
+
# via
|
300 |
+
# aiohttp
|
301 |
+
# yarl
|
302 |
+
multiprocess==0.70.15
|
303 |
+
# via datasets
|
304 |
+
murmurhash==1.0.12
|
305 |
+
# via
|
306 |
+
# preshed
|
307 |
+
# spacy
|
308 |
+
# thinc
|
309 |
+
mypy-extensions==1.0.0
|
310 |
+
# via typing-inspect
|
311 |
+
nest-asyncio==1.6.0
|
312 |
+
# via
|
313 |
+
# auralis-tts (pyproject.toml)
|
314 |
+
# outlines
|
315 |
+
networkx==3.4.2
|
316 |
+
# via
|
317 |
+
# auralis
|
318 |
+
# torch
|
319 |
+
num2words==0.5.14
|
320 |
+
# via auralis
|
321 |
+
numba==0.61.0
|
322 |
+
# via
|
323 |
+
# librosa
|
324 |
+
# outlines
|
325 |
+
numpy==1.26.4
|
326 |
+
# via
|
327 |
+
# auralis
|
328 |
+
# blis
|
329 |
+
# datasets
|
330 |
+
# gguf
|
331 |
+
# gradio
|
332 |
+
# langid
|
333 |
+
# librosa
|
334 |
+
# mistral-common
|
335 |
+
# numba
|
336 |
+
# opencv-python-headless
|
337 |
+
# outlines
|
338 |
+
# pandas
|
339 |
+
# pyloudnorm
|
340 |
+
# scikit-learn
|
341 |
+
# scipy
|
342 |
+
# soundfile
|
343 |
+
# soxr
|
344 |
+
# spacy
|
345 |
+
# thinc
|
346 |
+
# torchvision
|
347 |
+
# transformers
|
348 |
+
# vllm
|
349 |
+
nvidia-ml-py==12.570.86
|
350 |
+
# via
|
351 |
+
# auralis
|
352 |
+
# vllm
|
353 |
+
openai==1.64.0
|
354 |
+
# via vllm
|
355 |
+
opencc==1.1.9
|
356 |
+
# via auralis
|
357 |
+
opencv-python-headless==4.11.0.86
|
358 |
+
# via mistral-common
|
359 |
+
orjson==3.10.15
|
360 |
+
# via
|
361 |
+
# gradio
|
362 |
+
# langsmith
|
363 |
+
outlines==0.0.46
|
364 |
+
# via vllm
|
365 |
+
packaging==24.2
|
366 |
+
# via
|
367 |
+
# auralis
|
368 |
+
# datasets
|
369 |
+
# gradio
|
370 |
+
# gradio-client
|
371 |
+
# huggingface-hub
|
372 |
+
# langchain-core
|
373 |
+
# lazy-loader
|
374 |
+
# lm-format-enforcer
|
375 |
+
# marshmallow
|
376 |
+
# pooch
|
377 |
+
# pytest
|
378 |
+
# ray
|
379 |
+
# spacy
|
380 |
+
# thinc
|
381 |
+
# transformers
|
382 |
+
# weasel
|
383 |
+
pandas==2.2.3
|
384 |
+
# via
|
385 |
+
# datasets
|
386 |
+
# gradio
|
387 |
+
parso==0.8.4
|
388 |
+
# via jedi
|
389 |
+
partial-json-parser==0.2.1.1.post5
|
390 |
+
# via vllm
|
391 |
+
pdfminer-six==20231228
|
392 |
+
# via pdfplumber
|
393 |
+
pdfplumber==0.11.5
|
394 |
+
# via auralis-tts (pyproject.toml)
|
395 |
+
pexpect==4.9.0
|
396 |
+
# via ipython
|
397 |
+
pillow==11.1.0
|
398 |
+
# via
|
399 |
+
# gradio
|
400 |
+
# mistral-common
|
401 |
+
# pdfplumber
|
402 |
+
# torchvision
|
403 |
+
# vllm
|
404 |
+
plac==1.4.3
|
405 |
+
# via unidic
|
406 |
+
platformdirs==4.3.6
|
407 |
+
# via pooch
|
408 |
+
pluggy==1.5.0
|
409 |
+
# via pytest
|
410 |
+
pooch==1.8.2
|
411 |
+
# via librosa
|
412 |
+
preshed==3.0.9
|
413 |
+
# via
|
414 |
+
# spacy
|
415 |
+
# thinc
|
416 |
+
prometheus-client==0.21.1
|
417 |
+
# via
|
418 |
+
# prometheus-fastapi-instrumentator
|
419 |
+
# vllm
|
420 |
+
prometheus-fastapi-instrumentator==7.0.2
|
421 |
+
# via vllm
|
422 |
+
prompt-toolkit==3.0.50
|
423 |
+
# via ipython
|
424 |
+
propcache==0.3.0
|
425 |
+
# via
|
426 |
+
# aiohttp
|
427 |
+
# yarl
|
428 |
+
protobuf==5.29.3
|
429 |
+
# via
|
430 |
+
# ray
|
431 |
+
# vllm
|
432 |
+
psutil==7.0.0
|
433 |
+
# via vllm
|
434 |
+
ptyprocess==0.7.0
|
435 |
+
# via pexpect
|
436 |
+
pure-eval==0.2.3
|
437 |
+
# via stack-data
|
438 |
+
py-cpuinfo==9.0.0
|
439 |
+
# via vllm
|
440 |
+
pyairports==2.1.1
|
441 |
+
# via outlines
|
442 |
+
pyarrow==19.0.1
|
443 |
+
# via datasets
|
444 |
+
pycountry==24.6.1
|
445 |
+
# via outlines
|
446 |
+
pycparser==2.22
|
447 |
+
# via cffi
|
448 |
+
pydantic==2.10.6
|
449 |
+
# via
|
450 |
+
# compressed-tensors
|
451 |
+
# confection
|
452 |
+
# fastapi
|
453 |
+
# gradio
|
454 |
+
# langchain-core
|
455 |
+
# langsmith
|
456 |
+
# lm-format-enforcer
|
457 |
+
# mistral-common
|
458 |
+
# openai
|
459 |
+
# outlines
|
460 |
+
# spacy
|
461 |
+
# thinc
|
462 |
+
# vllm
|
463 |
+
# weasel
|
464 |
+
pydantic-core==2.27.2
|
465 |
+
# via pydantic
|
466 |
+
pydub==0.25.1
|
467 |
+
# via gradio
|
468 |
+
pygments==2.19.1
|
469 |
+
# via
|
470 |
+
# ipython
|
471 |
+
# rich
|
472 |
+
pyloudnorm==0.1.1
|
473 |
+
# via auralis
|
474 |
+
pypdfium2==4.30.1
|
475 |
+
# via pdfplumber
|
476 |
+
pypinyin==0.53.0
|
477 |
+
# via auralis
|
478 |
+
pytest==8.3.4
|
479 |
+
# via auralis
|
480 |
+
python-dateutil==2.9.0.post0
|
481 |
+
# via pandas
|
482 |
+
python-dotenv==1.0.1
|
483 |
+
# via uvicorn
|
484 |
+
python-multipart==0.0.20
|
485 |
+
# via gradio
|
486 |
+
pytz==2025.1
|
487 |
+
# via pandas
|
488 |
+
pyyaml==6.0.2
|
489 |
+
# via
|
490 |
+
# datasets
|
491 |
+
# gguf
|
492 |
+
# gradio
|
493 |
+
# huggingface-hub
|
494 |
+
# langchain-core
|
495 |
+
# lm-format-enforcer
|
496 |
+
# ray
|
497 |
+
# transformers
|
498 |
+
# uvicorn
|
499 |
+
# vllm
|
500 |
+
pyzmq==26.2.1
|
501 |
+
# via vllm
|
502 |
+
ray==2.42.1
|
503 |
+
# via vllm
|
504 |
+
referencing==0.36.2
|
505 |
+
# via
|
506 |
+
# jsonschema
|
507 |
+
# jsonschema-specifications
|
508 |
+
# outlines
|
509 |
+
regex==2024.11.6
|
510 |
+
# via
|
511 |
+
# bunkai
|
512 |
+
# tiktoken
|
513 |
+
# transformers
|
514 |
+
requests==2.32.3
|
515 |
+
# via
|
516 |
+
# datasets
|
517 |
+
# huggingface-hub
|
518 |
+
# langsmith
|
519 |
+
# mistral-common
|
520 |
+
# outlines
|
521 |
+
# pooch
|
522 |
+
# ray
|
523 |
+
# requests-toolbelt
|
524 |
+
# spacy
|
525 |
+
# tiktoken
|
526 |
+
# transformers
|
527 |
+
# unidic
|
528 |
+
# vllm
|
529 |
+
# weasel
|
530 |
+
requests-toolbelt==1.0.0
|
531 |
+
# via langsmith
|
532 |
+
rich==13.9.4
|
533 |
+
# via typer
|
534 |
+
rpds-py==0.23.1
|
535 |
+
# via
|
536 |
+
# jsonschema
|
537 |
+
# referencing
|
538 |
+
ruff==0.9.7
|
539 |
+
# via gradio
|
540 |
+
safehttpx==0.1.6
|
541 |
+
# via gradio
|
542 |
+
safetensors==0.5.2
|
543 |
+
# via
|
544 |
+
# auralis
|
545 |
+
# transformers
|
546 |
+
scikit-learn==1.6.1
|
547 |
+
# via librosa
|
548 |
+
scipy==1.15.2
|
549 |
+
# via
|
550 |
+
# librosa
|
551 |
+
# pyloudnorm
|
552 |
+
# scikit-learn
|
553 |
+
semantic-version==2.10.0
|
554 |
+
# via gradio
|
555 |
+
sentencepiece==0.2.0
|
556 |
+
# via
|
557 |
+
# mistral-common
|
558 |
+
# vllm
|
559 |
+
setuptools==75.8.0
|
560 |
+
# via
|
561 |
+
# auralis
|
562 |
+
# marisa-trie
|
563 |
+
# spacy
|
564 |
+
# thinc
|
565 |
+
shellingham==1.5.4
|
566 |
+
# via typer
|
567 |
+
six==1.17.0
|
568 |
+
# via
|
569 |
+
# ebooklib
|
570 |
+
# python-dateutil
|
571 |
+
smart-open==7.1.0
|
572 |
+
# via weasel
|
573 |
+
sniffio==1.3.1
|
574 |
+
# via
|
575 |
+
# anyio
|
576 |
+
# openai
|
577 |
+
sounddevice==0.5.1
|
578 |
+
# via auralis
|
579 |
+
soundfile==0.13.1
|
580 |
+
# via
|
581 |
+
# auralis
|
582 |
+
# librosa
|
583 |
+
soupsieve==2.6
|
584 |
+
# via beautifulsoup4
|
585 |
+
soxr==0.5.0.post1
|
586 |
+
# via librosa
|
587 |
+
spacy==3.7.5
|
588 |
+
# via auralis
|
589 |
+
spacy-legacy==3.0.12
|
590 |
+
# via spacy
|
591 |
+
spacy-loggers==1.0.5
|
592 |
+
# via spacy
|
593 |
+
spans==1.1.1
|
594 |
+
# via bunkai
|
595 |
+
srsly==2.5.1
|
596 |
+
# via
|
597 |
+
# confection
|
598 |
+
# spacy
|
599 |
+
# thinc
|
600 |
+
# weasel
|
601 |
+
stack-data==0.6.3
|
602 |
+
# via ipython
|
603 |
+
starlette==0.45.3
|
604 |
+
# via
|
605 |
+
# fastapi
|
606 |
+
# gradio
|
607 |
+
# prometheus-fastapi-instrumentator
|
608 |
+
sudachidict-core==20250129
|
609 |
+
# via auralis-tts (pyproject.toml)
|
610 |
+
sudachipy==0.6.10
|
611 |
+
# via
|
612 |
+
# auralis-tts (pyproject.toml)
|
613 |
+
# sudachidict-core
|
614 |
+
sympy==1.13.1
|
615 |
+
# via torch
|
616 |
+
tenacity==9.0.0
|
617 |
+
# via langchain-core
|
618 |
+
thinc==8.2.5
|
619 |
+
# via spacy
|
620 |
+
threadpoolctl==3.5.0
|
621 |
+
# via scikit-learn
|
622 |
+
tiktoken==0.9.0
|
623 |
+
# via
|
624 |
+
# mistral-common
|
625 |
+
# vllm
|
626 |
+
tokenizers==0.21.0
|
627 |
+
# via
|
628 |
+
# auralis
|
629 |
+
# transformers
|
630 |
+
# vllm
|
631 |
+
toml==0.10.2
|
632 |
+
# via bunkai
|
633 |
+
tomli==2.2.1
|
634 |
+
# via pytest
|
635 |
+
tomlkit==0.13.2
|
636 |
+
# via gradio
|
637 |
+
torch==2.5.1
|
638 |
+
# via
|
639 |
+
# auralis-tts (pyproject.toml)
|
640 |
+
# compressed-tensors
|
641 |
+
# torchaudio
|
642 |
+
# torchvision
|
643 |
+
# vllm
|
644 |
+
torchaudio==2.5.1
|
645 |
+
# via
|
646 |
+
# auralis-tts (pyproject.toml)
|
647 |
+
# auralis
|
648 |
+
torchvision==0.20.1
|
649 |
+
# via
|
650 |
+
# auralis-tts (pyproject.toml)
|
651 |
+
# vllm
|
652 |
+
tqdm==4.67.1
|
653 |
+
# via
|
654 |
+
# bunkai
|
655 |
+
# datasets
|
656 |
+
# gguf
|
657 |
+
# huggingface-hub
|
658 |
+
# openai
|
659 |
+
# outlines
|
660 |
+
# spacy
|
661 |
+
# transformers
|
662 |
+
# unidic
|
663 |
+
# vllm
|
664 |
+
traitlets==5.14.3
|
665 |
+
# via
|
666 |
+
# ipython
|
667 |
+
# matplotlib-inline
|
668 |
+
transformers==4.49.0
|
669 |
+
# via
|
670 |
+
# auralis
|
671 |
+
# compressed-tensors
|
672 |
+
# vllm
|
673 |
+
typer==0.15.1
|
674 |
+
# via
|
675 |
+
# gradio
|
676 |
+
# spacy
|
677 |
+
# weasel
|
678 |
+
typing-extensions==4.12.2
|
679 |
+
# via
|
680 |
+
# anyio
|
681 |
+
# beautifulsoup4
|
682 |
+
# cloudpathlib
|
683 |
+
# fastapi
|
684 |
+
# gradio
|
685 |
+
# gradio-client
|
686 |
+
# huggingface-hub
|
687 |
+
# ipython
|
688 |
+
# langchain-core
|
689 |
+
# librosa
|
690 |
+
# mistral-common
|
691 |
+
# multidict
|
692 |
+
# openai
|
693 |
+
# outlines
|
694 |
+
# pydantic
|
695 |
+
# pydantic-core
|
696 |
+
# referencing
|
697 |
+
# rich
|
698 |
+
# torch
|
699 |
+
# typer
|
700 |
+
# typing-inspect
|
701 |
+
# uvicorn
|
702 |
+
# vllm
|
703 |
+
typing-inspect==0.9.0
|
704 |
+
# via dataclasses-json
|
705 |
+
tzdata==2025.1
|
706 |
+
# via pandas
|
707 |
+
unidic==1.1.0
|
708 |
+
# via auralis-tts (pyproject.toml)
|
709 |
+
urllib3==2.3.0
|
710 |
+
# via requests
|
711 |
+
uvicorn==0.34.0
|
712 |
+
# via
|
713 |
+
# gradio
|
714 |
+
# vllm
|
715 |
+
uvloop==0.21.0
|
716 |
+
# via uvicorn
|
717 |
+
vllm==0.6.4.post1
|
718 |
+
# via auralis
|
719 |
+
wasabi==0.10.1
|
720 |
+
# via
|
721 |
+
# spacy
|
722 |
+
# thinc
|
723 |
+
# unidic
|
724 |
+
# weasel
|
725 |
+
watchfiles==1.0.4
|
726 |
+
# via uvicorn
|
727 |
+
wcwidth==0.2.13
|
728 |
+
# via prompt-toolkit
|
729 |
+
weasel==0.4.1
|
730 |
+
# via spacy
|
731 |
+
websockets==14.2
|
732 |
+
# via
|
733 |
+
# gradio-client
|
734 |
+
# uvicorn
|
735 |
+
wrapt==1.17.2
|
736 |
+
# via smart-open
|
737 |
+
xxhash==3.5.0
|
738 |
+
# via datasets
|
739 |
+
yakinori==0.1.2
|
740 |
+
# via auralis-tts (pyproject.toml)
|
741 |
+
yarl==1.18.3
|
742 |
+
# via aiohttp
|
743 |
+
zipp==3.21.0
|
744 |
+
# via importlib-metadata
|
745 |
+
zstandard==0.23.0
|
746 |
+
# via langsmith
|
tts_ui/__init__.py
ADDED
File without changes
|
tts_ui/tts/__init__.py
ADDED
File without changes
|
tts_ui/tts/auralis_tts_engine.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from auralis import TTS, TTSRequest, TTSOutput, setup_logger
|
2 |
+
from gradio import File, Files, Slider
|
3 |
+
import torch
|
4 |
+
from tts_ui.utils import (
|
5 |
+
calculate_byte_size,
|
6 |
+
split_text_into_chunks,
|
7 |
+
tmp_dir,
|
8 |
+
extract_text_from_epub,
|
9 |
+
text_from_file,
|
10 |
+
convert_audio,
|
11 |
+
)
|
12 |
+
from tts_ui.utils.doc_processor import DocumentProcessor
|
13 |
+
import hashlib
|
14 |
+
import torchaudio
|
15 |
+
import time
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
# Loading the TTS engine first and assign it to the class.
|
19 |
+
# This looks ugly, but it works
|
20 |
+
logger = setup_logger(__file__)
|
21 |
+
|
22 |
+
tts = TTS()
|
23 |
+
model_path = "AstraMindAI/xttsv2" # change this if you have a different model
|
24 |
+
gpt_model = "AstraMindAI/xtts2-gpt"
|
25 |
+
|
26 |
+
try:
|
27 |
+
tts: TTS = tts.from_pretrained(
|
28 |
+
model_name_or_path=model_path,
|
29 |
+
gpt_model=gpt_model,
|
30 |
+
enforce_eager=False,
|
31 |
+
max_seq_len_to_capture=4096, # Match WSL2 page size
|
32 |
+
scheduler_max_concurrency=4,
|
33 |
+
)
|
34 |
+
logger.info(f"Successfully loaded model {model_path}")
|
35 |
+
except Exception as e:
|
36 |
+
error_msg = f"Failed to load model: {e}."
|
37 |
+
logger.error(error_msg)
|
38 |
+
raise Exception(error_msg)
|
39 |
+
|
40 |
+
|
41 |
+
class AuralisTTSEngine:
|
42 |
+
def __init__(self):
|
43 |
+
self.logger = logger
|
44 |
+
self.tts: TTS = tts
|
45 |
+
self.model_path: str = model_path
|
46 |
+
self.gpt_model: str = gpt_model
|
47 |
+
self.tmp_dir: Path = tmp_dir
|
48 |
+
self.doc_processor = DocumentProcessor
|
49 |
+
|
50 |
+
def process_text_and_generate(
|
51 |
+
self,
|
52 |
+
input_text: str,
|
53 |
+
ref_audio_files: str | list[str] | bytes | list[bytes],
|
54 |
+
speed: float,
|
55 |
+
enhance_speech: bool,
|
56 |
+
temperature: float,
|
57 |
+
top_p: float,
|
58 |
+
top_k: float,
|
59 |
+
repetition_penalty: float,
|
60 |
+
language: str = "auto",
|
61 |
+
*args,
|
62 |
+
):
|
63 |
+
"""Process text and generate audio."""
|
64 |
+
log_messages: str = ""
|
65 |
+
if not ref_audio_files:
|
66 |
+
log_messages += "Please provide at least one reference audio!\n"
|
67 |
+
return None, log_messages
|
68 |
+
|
69 |
+
input_size = calculate_byte_size(input_text)
|
70 |
+
|
71 |
+
# use the chunking process if the text is too large
|
72 |
+
if input_size > 45000:
|
73 |
+
self.logger.info(
|
74 |
+
f"Found {input_size} bytes of text. Switching to chunk mode."
|
75 |
+
)
|
76 |
+
# todo: this function has a couple of overlapping functions as normal processing. I need to optimize the code
|
77 |
+
return self._process_large_text(
|
78 |
+
input_text,
|
79 |
+
ref_audio_files,
|
80 |
+
speed,
|
81 |
+
enhance_speech,
|
82 |
+
temperature,
|
83 |
+
top_p,
|
84 |
+
top_k,
|
85 |
+
repetition_penalty,
|
86 |
+
language,
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
try:
|
90 |
+
with torch.no_grad():
|
91 |
+
# clone voices from all file paths (shorten them)
|
92 |
+
base64_voices: str | list[str] | bytes | list[bytes] = (
|
93 |
+
ref_audio_files[:5]
|
94 |
+
)
|
95 |
+
|
96 |
+
request = TTSRequest(
|
97 |
+
text=input_text,
|
98 |
+
speaker_files=base64_voices,
|
99 |
+
stream=False,
|
100 |
+
enhance_speech=enhance_speech,
|
101 |
+
temperature=temperature,
|
102 |
+
top_p=top_p,
|
103 |
+
top_k=top_k,
|
104 |
+
repetition_penalty=repetition_penalty,
|
105 |
+
language=language,
|
106 |
+
)
|
107 |
+
|
108 |
+
output: TTSOutput = self.tts.generate_speech(request)
|
109 |
+
|
110 |
+
if output:
|
111 |
+
if speed != 1:
|
112 |
+
output.change_speed(speed)
|
113 |
+
log_messages += f"✅ Successfully Generated audio\n"
|
114 |
+
self.logger.info(log_messages)
|
115 |
+
# return the sample rate and the audio file as a byte array
|
116 |
+
return (
|
117 |
+
output.sample_rate,
|
118 |
+
convert_audio(output.array),
|
119 |
+
), log_messages
|
120 |
+
|
121 |
+
else:
|
122 |
+
log_messages += "❌ No output was generated. Check that the model was correctly loaded\n"
|
123 |
+
return None, log_messages
|
124 |
+
except Exception as e:
|
125 |
+
self.logger.error(f"Error: {e}")
|
126 |
+
log_messages += f"❌ An Error occured: {e}\n"
|
127 |
+
return None, log_messages
|
128 |
+
|
129 |
+
def _process_large_text(
|
130 |
+
self,
|
131 |
+
input_full_text: str,
|
132 |
+
ref_audio_files: str | list[str] | bytes | list[bytes],
|
133 |
+
speed: float,
|
134 |
+
enhance_speech: bool,
|
135 |
+
temperature: float,
|
136 |
+
top_p: float,
|
137 |
+
top_k: float,
|
138 |
+
repetition_penalty: float,
|
139 |
+
language: str = "auto",
|
140 |
+
):
|
141 |
+
"""Process text in chunks and combine results"""
|
142 |
+
log_messages: str = ""
|
143 |
+
|
144 |
+
if not ref_audio_files:
|
145 |
+
log_messages += "Please provide at least one reference audio!\n"
|
146 |
+
return None, log_messages
|
147 |
+
|
148 |
+
base64_voices: str | list[str] | bytes | list[bytes] = ref_audio_files[:5]
|
149 |
+
|
150 |
+
chunks: list[str] = split_text_into_chunks(input_full_text)
|
151 |
+
print(f"Created {len(chunks)} chunks")
|
152 |
+
|
153 |
+
audio_segments: list[TTSOutput] = []
|
154 |
+
for idx, chunk in enumerate(chunks):
|
155 |
+
request = TTSRequest(
|
156 |
+
text=chunk,
|
157 |
+
speaker_files=base64_voices,
|
158 |
+
stream=False,
|
159 |
+
enhance_speech=enhance_speech,
|
160 |
+
temperature=temperature,
|
161 |
+
top_p=top_p,
|
162 |
+
top_k=top_k,
|
163 |
+
repetition_penalty=repetition_penalty,
|
164 |
+
language=language,
|
165 |
+
)
|
166 |
+
|
167 |
+
try:
|
168 |
+
with torch.no_grad():
|
169 |
+
audio = self.tts.generate_speech(request)
|
170 |
+
audio_segments.append(audio)
|
171 |
+
self.logger.info(f"Processed {idx + 1} chunks out of {len(chunks)}")
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
log_messages += f"❌ Chunk processing failed: {e}\n"
|
175 |
+
return None, log_messages
|
176 |
+
|
177 |
+
if len(audio_segments) <= 0:
|
178 |
+
log_messages += f"❌ Chunk processing failed. Chunk size: {len(chunks)}\n"
|
179 |
+
return None, log_messages
|
180 |
+
|
181 |
+
combined_output: TTSOutput = TTSOutput.combine_outputs(audio_segments)
|
182 |
+
|
183 |
+
if speed != 1:
|
184 |
+
combined_output.change_speed(speed)
|
185 |
+
|
186 |
+
log_messages += f"✅ Successfully Generated audio\n"
|
187 |
+
# return combined_output
|
188 |
+
return (
|
189 |
+
combined_output.sample_rate,
|
190 |
+
convert_audio(combined_output.array),
|
191 |
+
), log_messages
|
192 |
+
|
193 |
+
def process_file_and_generate(
|
194 |
+
self,
|
195 |
+
file_input: File,
|
196 |
+
ref_audio_files_file: Files,
|
197 |
+
speed_file: Slider,
|
198 |
+
enhance_speech_file,
|
199 |
+
temperature_file,
|
200 |
+
top_p_file,
|
201 |
+
top_k_file,
|
202 |
+
repetition_penalty_file,
|
203 |
+
language_file,
|
204 |
+
):
|
205 |
+
# todo: refactor this to use the document processor object
|
206 |
+
if file_input:
|
207 |
+
file_extension: str = Path(file_input.name).suffix
|
208 |
+
|
209 |
+
match file_extension:
|
210 |
+
case ".epub":
|
211 |
+
input_text: str = extract_text_from_epub(file_input.name)
|
212 |
+
case ".txt" | ".md":
|
213 |
+
input_text = text_from_file(file_input.name)
|
214 |
+
case _:
|
215 |
+
return (
|
216 |
+
None,
|
217 |
+
"Unsupported file format, it needs to be either .epub or .txt",
|
218 |
+
)
|
219 |
+
|
220 |
+
return self._process_large_text(
|
221 |
+
input_text,
|
222 |
+
ref_audio_files_file,
|
223 |
+
speed_file,
|
224 |
+
enhance_speech_file,
|
225 |
+
temperature_file,
|
226 |
+
top_p_file,
|
227 |
+
top_k_file,
|
228 |
+
repetition_penalty_file,
|
229 |
+
language_file,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
return None, "Please provide an .epub or .txt file!"
|
233 |
+
|
234 |
+
def process_mic_and_generate(
|
235 |
+
self,
|
236 |
+
input_text_mic,
|
237 |
+
mic_ref_audio,
|
238 |
+
speed_mic,
|
239 |
+
enhance_speech_mic,
|
240 |
+
temperature_mic,
|
241 |
+
top_p_mic,
|
242 |
+
top_k_mic,
|
243 |
+
repetition_penalty_mic,
|
244 |
+
language_mic,
|
245 |
+
):
|
246 |
+
if mic_ref_audio:
|
247 |
+
data: bytes = str(time.time()).encode("utf-8")
|
248 |
+
hash: str = hashlib.sha1(data).hexdigest()[:10]
|
249 |
+
output_path = self.tmp_dir / (f"mic_{hash}.wav")
|
250 |
+
|
251 |
+
torch_audio: torch.Tensor = torch.from_numpy(mic_ref_audio[1].astype(float))
|
252 |
+
try:
|
253 |
+
torchaudio.save(
|
254 |
+
str(output_path), torch_audio.unsqueeze(0), mic_ref_audio[0]
|
255 |
+
)
|
256 |
+
return self.process_text_and_generate(
|
257 |
+
input_text_mic,
|
258 |
+
[Path(output_path)],
|
259 |
+
speed_mic,
|
260 |
+
enhance_speech_mic,
|
261 |
+
temperature_mic,
|
262 |
+
top_p_mic,
|
263 |
+
top_k_mic,
|
264 |
+
repetition_penalty_mic,
|
265 |
+
language_mic,
|
266 |
+
)
|
267 |
+
except Exception as e:
|
268 |
+
self.logger.error(f"Error saving audio file: {e}")
|
269 |
+
return None, f"Error saving audio file: {e}"
|
270 |
+
else:
|
271 |
+
return None, "Please record an audio!"
|
tts_ui/ui/__init__.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tts_ui.utils import *
|
3 |
+
from tts_ui.tts.auralis_tts_engine import AuralisTTSEngine
|
4 |
+
|
5 |
+
|
6 |
+
supported_langs: list[str] = [
|
7 |
+
"en",
|
8 |
+
"es",
|
9 |
+
"fr",
|
10 |
+
"de",
|
11 |
+
"it",
|
12 |
+
"pt",
|
13 |
+
"pl",
|
14 |
+
"tr",
|
15 |
+
"ru",
|
16 |
+
"nl",
|
17 |
+
"cs",
|
18 |
+
"ar",
|
19 |
+
"zh-cn",
|
20 |
+
"hu",
|
21 |
+
"ko",
|
22 |
+
"ja",
|
23 |
+
"hi",
|
24 |
+
"auto",
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
def build_gradio_ui(tts_engine: AuralisTTSEngine) -> gr.Blocks:
|
29 |
+
"""Builds and launches the Gradio UI for Auralis."""
|
30 |
+
with gr.Blocks(title="Auralis TTS UI", theme="soft") as ui:
|
31 |
+
|
32 |
+
gr.Markdown(
|
33 |
+
"""
|
34 |
+
# Text-to-Speech Interface
|
35 |
+
|
36 |
+
Convert text to speech with advanced voice cloning and enhancement.
|
37 |
+
|
38 |
+
Powered by Auralis 🌌 made by Hoon
|
39 |
+
"""
|
40 |
+
)
|
41 |
+
|
42 |
+
with gr.Tab("Text to Speech"):
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column():
|
45 |
+
input_text = gr.Text(
|
46 |
+
label="Enter Text Here",
|
47 |
+
placeholder="Write the text you want to convert...",
|
48 |
+
)
|
49 |
+
ref_audio_files = gr.Files(
|
50 |
+
label="Reference Audio Files", file_types=["audio"]
|
51 |
+
)
|
52 |
+
with gr.Accordion("Advanced settings", open=False):
|
53 |
+
speed = gr.Slider(
|
54 |
+
label="Playback speed",
|
55 |
+
minimum=0.5,
|
56 |
+
maximum=2.0,
|
57 |
+
value=1.0,
|
58 |
+
step=0.1,
|
59 |
+
)
|
60 |
+
enhance_speech = gr.Checkbox(
|
61 |
+
label="Enhance Reference Speech", value=False
|
62 |
+
)
|
63 |
+
temperature = gr.Slider(
|
64 |
+
label="Temperature",
|
65 |
+
minimum=0.5,
|
66 |
+
maximum=1.0,
|
67 |
+
value=0.75,
|
68 |
+
step=0.05,
|
69 |
+
)
|
70 |
+
top_p = gr.Slider(
|
71 |
+
label="Top P",
|
72 |
+
minimum=0.5,
|
73 |
+
maximum=1.0,
|
74 |
+
value=0.85,
|
75 |
+
step=0.05,
|
76 |
+
)
|
77 |
+
top_k = gr.Slider(
|
78 |
+
label="Top K", minimum=0, maximum=100, value=50, step=10
|
79 |
+
)
|
80 |
+
repetition_penalty = gr.Slider(
|
81 |
+
label="Repetition penalty",
|
82 |
+
minimum=1.0,
|
83 |
+
maximum=10.0,
|
84 |
+
value=5.0,
|
85 |
+
step=0.5,
|
86 |
+
)
|
87 |
+
language = gr.Dropdown(
|
88 |
+
label="Target Language",
|
89 |
+
choices=supported_langs,
|
90 |
+
value="auto",
|
91 |
+
)
|
92 |
+
generate_button = gr.Button("Generate Speech")
|
93 |
+
with gr.Column():
|
94 |
+
audio_output = gr.Audio(label="Generated Audio")
|
95 |
+
log_output = gr.Text(label="Log Output")
|
96 |
+
|
97 |
+
generate_button.click(
|
98 |
+
fn=tts_engine.process_text_and_generate,
|
99 |
+
inputs=[
|
100 |
+
input_text,
|
101 |
+
ref_audio_files,
|
102 |
+
speed,
|
103 |
+
enhance_speech,
|
104 |
+
temperature,
|
105 |
+
top_p,
|
106 |
+
top_k,
|
107 |
+
repetition_penalty,
|
108 |
+
language,
|
109 |
+
],
|
110 |
+
outputs=[audio_output, log_output],
|
111 |
+
)
|
112 |
+
|
113 |
+
with gr.Tab("File to Speech"):
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
file_input = gr.File(
|
117 |
+
label="Text / Ebook File", file_types=[".txt", ".md", ".epub"]
|
118 |
+
)
|
119 |
+
ref_audio_files_file = gr.Files(
|
120 |
+
label="Reference Audio Files", file_types=["audio"]
|
121 |
+
)
|
122 |
+
with gr.Accordion("Advanced settings", open=False):
|
123 |
+
speed_file = gr.Slider(
|
124 |
+
label="Playback speed",
|
125 |
+
minimum=0.5,
|
126 |
+
maximum=2.0,
|
127 |
+
value=1.0,
|
128 |
+
step=0.1,
|
129 |
+
)
|
130 |
+
enhance_speech_file = gr.Checkbox(
|
131 |
+
label="Enhance Reference Speech", value=False
|
132 |
+
)
|
133 |
+
temperature_file = gr.Slider(
|
134 |
+
label="Temperature",
|
135 |
+
minimum=0.5,
|
136 |
+
maximum=1.0,
|
137 |
+
value=0.75,
|
138 |
+
step=0.05,
|
139 |
+
)
|
140 |
+
top_p_file = gr.Slider(
|
141 |
+
label="Top P",
|
142 |
+
minimum=0.5,
|
143 |
+
maximum=1.0,
|
144 |
+
value=0.85,
|
145 |
+
step=0.05,
|
146 |
+
)
|
147 |
+
top_k_file = gr.Slider(
|
148 |
+
label="Top K", minimum=0, maximum=100, value=50, step=10
|
149 |
+
)
|
150 |
+
repetition_penalty_file = gr.Slider(
|
151 |
+
label="Repetition penalty",
|
152 |
+
minimum=1.0,
|
153 |
+
maximum=10.0,
|
154 |
+
value=5.0,
|
155 |
+
step=0.5,
|
156 |
+
)
|
157 |
+
language_file = gr.Dropdown(
|
158 |
+
label="Target Language",
|
159 |
+
choices=supported_langs,
|
160 |
+
value="auto",
|
161 |
+
)
|
162 |
+
generate_button_file = gr.Button("Generate Speech from File")
|
163 |
+
with gr.Column():
|
164 |
+
audio_output_file = gr.Audio(label="Generated Audio")
|
165 |
+
log_output_file = gr.Text(label="Log Output")
|
166 |
+
|
167 |
+
generate_button_file.click(
|
168 |
+
tts_engine.process_file_and_generate,
|
169 |
+
inputs=[
|
170 |
+
file_input,
|
171 |
+
ref_audio_files_file,
|
172 |
+
speed_file,
|
173 |
+
enhance_speech_file,
|
174 |
+
temperature_file,
|
175 |
+
top_p_file,
|
176 |
+
top_k_file,
|
177 |
+
repetition_penalty_file,
|
178 |
+
language_file,
|
179 |
+
],
|
180 |
+
outputs=[audio_output_file, log_output_file],
|
181 |
+
)
|
182 |
+
|
183 |
+
with gr.Tab("Clone With Microphone"):
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column():
|
186 |
+
input_text_mic = gr.Text(
|
187 |
+
label="Enter Text Here",
|
188 |
+
placeholder="Write the text you want to convert...",
|
189 |
+
)
|
190 |
+
mic_ref_audio = gr.Audio(
|
191 |
+
label="Record Reference Audio", sources=["microphone"]
|
192 |
+
)
|
193 |
+
|
194 |
+
with gr.Accordion("Advanced settings", open=False):
|
195 |
+
speed_mic = gr.Slider(
|
196 |
+
label="Playback speed",
|
197 |
+
minimum=0.5,
|
198 |
+
maximum=2.0,
|
199 |
+
value=1.0,
|
200 |
+
step=0.1,
|
201 |
+
)
|
202 |
+
enhance_speech_mic = gr.Checkbox(
|
203 |
+
label="Enhance Reference Speech", value=True
|
204 |
+
)
|
205 |
+
temperature_mic = gr.Slider(
|
206 |
+
label="Temperature",
|
207 |
+
minimum=0.5,
|
208 |
+
maximum=1.0,
|
209 |
+
value=0.75,
|
210 |
+
step=0.05,
|
211 |
+
)
|
212 |
+
top_p_mic = gr.Slider(
|
213 |
+
label="Top P",
|
214 |
+
minimum=0.5,
|
215 |
+
maximum=1.0,
|
216 |
+
value=0.85,
|
217 |
+
step=0.05,
|
218 |
+
)
|
219 |
+
top_k_mic = gr.Slider(
|
220 |
+
label="Top K", minimum=0, maximum=100, value=50, step=10
|
221 |
+
)
|
222 |
+
repetition_penalty_mic = gr.Slider(
|
223 |
+
label="Repetition penalty",
|
224 |
+
minimum=1.0,
|
225 |
+
maximum=10.0,
|
226 |
+
value=5.0,
|
227 |
+
step=0.5,
|
228 |
+
)
|
229 |
+
language_mic = gr.Dropdown(
|
230 |
+
label="Target Language",
|
231 |
+
choices=supported_langs,
|
232 |
+
value="auto",
|
233 |
+
)
|
234 |
+
generate_button_mic = gr.Button("Generate Speech")
|
235 |
+
with gr.Column():
|
236 |
+
audio_output_mic = gr.Audio(label="Generated Audio")
|
237 |
+
log_output_mic = gr.Text(label="Log Output")
|
238 |
+
|
239 |
+
generate_button_mic.click(
|
240 |
+
fn=tts_engine.process_mic_and_generate,
|
241 |
+
inputs=[
|
242 |
+
input_text_mic,
|
243 |
+
mic_ref_audio,
|
244 |
+
speed_mic,
|
245 |
+
enhance_speech_mic,
|
246 |
+
temperature_mic,
|
247 |
+
top_p_mic,
|
248 |
+
top_k_mic,
|
249 |
+
repetition_penalty_mic,
|
250 |
+
language_mic,
|
251 |
+
],
|
252 |
+
outputs=[audio_output_mic, log_output_mic],
|
253 |
+
)
|
254 |
+
|
255 |
+
return ui
|
tts_ui/utils/__init__.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import uuid
|
3 |
+
import shutil
|
4 |
+
from pathlib import Path
|
5 |
+
import ebooklib
|
6 |
+
from ebooklib import epub
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
+
from yakinori import Yakinori
|
10 |
+
import regex as re
|
11 |
+
import numpy as np
|
12 |
+
import jaconv
|
13 |
+
import bunkai
|
14 |
+
|
15 |
+
# Create a temporary directory to store short-named files
|
16 |
+
tmp_dir = Path("/tmp/auralis")
|
17 |
+
tmp_dir.mkdir(exist_ok=True)
|
18 |
+
|
19 |
+
|
20 |
+
def shorten_filename(original_path: str) -> str:
|
21 |
+
"""Copies the given file to a temporary directory with a shorter, random filename."""
|
22 |
+
ext: str = Path(original_path).suffix
|
23 |
+
short_name: str = "file_" + uuid.uuid4().hex[:8] + ext
|
24 |
+
short_path: Path = tmp_dir / short_name
|
25 |
+
shutil.copyfile(original_path, short_path)
|
26 |
+
return str(short_path)
|
27 |
+
|
28 |
+
|
29 |
+
def extract_text_from_epub(epub_path: str, output_path=None) -> str:
|
30 |
+
"""
|
31 |
+
Extracts text from an EPUB file and optionally saves it to a text file.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
epub_path (str): Path to the EPUB file
|
35 |
+
output_path (str, optional): Path where to save the text file
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
str: The extracted text
|
39 |
+
"""
|
40 |
+
# Load the book
|
41 |
+
book: epub.EpubBook = epub.read_epub(epub_path)
|
42 |
+
|
43 |
+
# List to hold extracted text
|
44 |
+
chapters: list[str] = []
|
45 |
+
|
46 |
+
# Extract text from each chapter
|
47 |
+
for item in book.get_items():
|
48 |
+
if item.get_type() == ebooklib.ITEM_DOCUMENT:
|
49 |
+
# Get HTML content
|
50 |
+
html_content = item.get_content().decode("utf-8")
|
51 |
+
|
52 |
+
# Use BeautifulSoup to extract text
|
53 |
+
soup = BeautifulSoup(html_content, "html.parser")
|
54 |
+
|
55 |
+
# Remove scripts and styles
|
56 |
+
for script in soup(["script", "style"]):
|
57 |
+
script.decompose()
|
58 |
+
|
59 |
+
# Get text
|
60 |
+
text: str = soup.get_text()
|
61 |
+
|
62 |
+
# Clean text
|
63 |
+
lines = (line.strip() for line in text.splitlines())
|
64 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
65 |
+
text = "\n".join(chunk for chunk in chunks if chunk)
|
66 |
+
|
67 |
+
chapters.append(text)
|
68 |
+
|
69 |
+
# Join all chapters
|
70 |
+
full_text: str = "\n\n".join(chapters)
|
71 |
+
|
72 |
+
# Save text if output path is specified
|
73 |
+
if output_path:
|
74 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
75 |
+
f.write(full_text)
|
76 |
+
|
77 |
+
return full_text.replace("»", '"').replace("«", '"')
|
78 |
+
|
79 |
+
|
80 |
+
def text_from_file(txt_file_path: str) -> str:
|
81 |
+
# Shorten filename before reading
|
82 |
+
txt_short_path: str = shorten_filename(txt_file_path)
|
83 |
+
with open(txt_short_path, "r") as f:
|
84 |
+
text: str = f.read()
|
85 |
+
return text
|
86 |
+
|
87 |
+
|
88 |
+
def clone_voice(audio_path: str) -> str:
|
89 |
+
"""Clone a voice from an audio path."""
|
90 |
+
# Shorten filename before reading
|
91 |
+
audio_short_path: str = shorten_filename(audio_path)
|
92 |
+
with open(audio_short_path, "rb") as f:
|
93 |
+
audio_data: str = base64.b64encode(f.read()).decode("utf-8")
|
94 |
+
return audio_data
|
95 |
+
|
96 |
+
|
97 |
+
def calculate_byte_size(text: str) -> int:
|
98 |
+
"""Calculate UTF-8 encoded byte size of text"""
|
99 |
+
return len(text.encode("utf-8"))
|
100 |
+
|
101 |
+
|
102 |
+
def is_japanese(text) -> bool:
|
103 |
+
# Regex patterns for Hiragana, Katakana, and common Kanji/CJK unified blocks
|
104 |
+
hiragana = r"[\p{Hiragana}]"
|
105 |
+
katakana = r"[\p{Katakana}]"
|
106 |
+
|
107 |
+
# Check for Hiragana or Katakana (unique to Japanese)
|
108 |
+
return bool(re.search(hiragana, text) or re.search(katakana, text))
|
109 |
+
|
110 |
+
|
111 |
+
def preprocess_japanese_text(text: str) -> str:
|
112 |
+
alpha2kana: str = jaconv.alphabet2kana(text)
|
113 |
+
normalized_jp: str = jaconv.normalize(alpha2kana)
|
114 |
+
|
115 |
+
yakinori = Yakinori()
|
116 |
+
|
117 |
+
splitter = bunkai.Bunkai()
|
118 |
+
|
119 |
+
sentences: np.Iterator[str] = splitter(normalized_jp)
|
120 |
+
|
121 |
+
final: str = ""
|
122 |
+
|
123 |
+
for sentence in sentences:
|
124 |
+
parsed_list: list[str] = yakinori.get_parsed_list(sentence)
|
125 |
+
final += yakinori.get_hiragana_sentence(parsed_list, is_hatsuon=True)
|
126 |
+
|
127 |
+
return final
|
128 |
+
|
129 |
+
|
130 |
+
def convert_audio(data: np.ndarray) -> np.ndarray:
|
131 |
+
"""Convert any float format to proper 16-bit PCM"""
|
132 |
+
if data.dtype in [np.float16, np.float32, np.float64]:
|
133 |
+
# Normalize first to [-1, 1] range
|
134 |
+
data = data.astype(np.float32) / np.max(np.abs(data))
|
135 |
+
# Scale to 16-bit int range
|
136 |
+
data = (data * 32767).astype(np.int16)
|
137 |
+
return data
|
138 |
+
|
139 |
+
|
140 |
+
def split_text_into_chunks(
|
141 |
+
text: str, chunk_size: int = 2000, chunk_overlap: int = 100
|
142 |
+
) -> list[str]:
|
143 |
+
"""
|
144 |
+
Split text into chunks respecting byte limits and natural boundaries.
|
145 |
+
This function also automatically converts Japanese Kanji into Kana for better readability.
|
146 |
+
"""
|
147 |
+
|
148 |
+
text_to_process = text
|
149 |
+
|
150 |
+
text_separators: list[str] = [
|
151 |
+
"\n\n",
|
152 |
+
"\n",
|
153 |
+
"。",
|
154 |
+
".",
|
155 |
+
"?",
|
156 |
+
"!",
|
157 |
+
"?",
|
158 |
+
"!",
|
159 |
+
",",
|
160 |
+
"、",
|
161 |
+
",",
|
162 |
+
"」",
|
163 |
+
"』",
|
164 |
+
"\u3002",
|
165 |
+
"\uff0c",
|
166 |
+
"\u3001",
|
167 |
+
"\uff0e",
|
168 |
+
"",
|
169 |
+
]
|
170 |
+
|
171 |
+
if is_japanese(text_to_process):
|
172 |
+
text_to_process = preprocess_japanese_text(text_to_process)
|
173 |
+
|
174 |
+
splitter = RecursiveCharacterTextSplitter(
|
175 |
+
separators=text_separators,
|
176 |
+
chunk_size=chunk_size, # Optimized for TTS context windows
|
177 |
+
chunk_overlap=chunk_overlap,
|
178 |
+
length_function=len,
|
179 |
+
is_separator_regex=False,
|
180 |
+
)
|
181 |
+
|
182 |
+
return splitter.split_text(text)
|
tts_ui/utils/doc_processor.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import markdown
|
2 |
+
import pdfplumber
|
3 |
+
from pathlib import Path
|
4 |
+
from tts_ui.utils import split_text_into_chunks, extract_text_from_epub, text_from_file
|
5 |
+
|
6 |
+
|
7 |
+
class DocumentProcessor:
|
8 |
+
def __init__(self, max_word_chunk_size=4000):
|
9 |
+
self.max_word_chunk_size: int = max_word_chunk_size # Characters per chunk
|
10 |
+
|
11 |
+
def process_doc(self, file_path: Path) -> list[str]:
|
12 |
+
# get the file extension from the path
|
13 |
+
ext: str = file_path.name.split(".")[-1].lower()
|
14 |
+
|
15 |
+
match ext:
|
16 |
+
case "pdf":
|
17 |
+
return self._process_pdf(file_path)
|
18 |
+
case "epub":
|
19 |
+
return self._process_epub(file_path)
|
20 |
+
case "md":
|
21 |
+
return self._process_markdown(file_path)
|
22 |
+
case "txt":
|
23 |
+
return self._process_text(file_path)
|
24 |
+
case _:
|
25 |
+
raise Exception(f"No file found in {file_path}")
|
26 |
+
|
27 |
+
def _process_pdf(self, file_path: str) -> list[str]:
|
28 |
+
text = ""
|
29 |
+
with pdfplumber.open(file_path) as pdf:
|
30 |
+
for page in pdf.pages:
|
31 |
+
text += page.extract_text() + "\n"
|
32 |
+
return self._chunk_text(text)
|
33 |
+
|
34 |
+
def _process_epub(self, file_path: str) -> list[str]:
|
35 |
+
text = extract_text_from_epub(file_path)
|
36 |
+
return self._chunk_text(text)
|
37 |
+
|
38 |
+
def _process_markdown(self, file_path: str) -> list[str]:
|
39 |
+
with open(file_path, "r") as f:
|
40 |
+
md_text: str = f.read()
|
41 |
+
return self._chunk_text(markdown.markdown(md_text))
|
42 |
+
|
43 |
+
def _process_text(self, file_path: str) -> list[str]:
|
44 |
+
text = text_from_file(file_path)
|
45 |
+
return self._chunk_text(text)
|
46 |
+
|
47 |
+
def _chunk_text(self, text: str) -> list[str]:
|
48 |
+
return split_text_into_chunks(text, self.max_word_chunk_size)
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|