Spaces:
Runtime error
Runtime error
import timm | |
import torch.nn as nn | |
from pathlib import Path | |
from .utils import activations, forward_default, get_activation | |
# thygate: just dropped the file in place here together with the single function import merge_pre_bn from Next_ViT repo which is no longer required : | |
#file = open( Path.joinpath(Path.cwd(), "/extensions/stable-diffusion-webui-depthmap-script/midas/externals/Next_ViT/classification/nextvit.py"), "r") | |
#source_code = file.read().replace(" utils", " externals.Next_ViT.classification.utils") | |
#exec(source_code) | |
#start of file : Next_ViT/classification/nextvit.py : | |
# Copyright (c) ByteDance Inc. All rights reserved. | |
from functools import partial | |
import torch | |
import torch.utils.checkpoint as checkpoint | |
from einops import rearrange | |
from timm.models.layers import DropPath, trunc_normal_ | |
from timm.models.registry import register_model | |
from torch import nn | |
# function from Next_ViT/classification/utils.py : merge_pre_bn | |
# copied here to get rid of Next_ViT repo dependancy | |
def merge_pre_bn(module, pre_bn_1, pre_bn_2=None): | |
""" Merge pre BN to reduce inference runtime. | |
""" | |
weight = module.weight.data | |
if module.bias is None: | |
zeros = torch.zeros(module.out_channels, device=weight.device).type(weight.type()) | |
module.bias = nn.Parameter(zeros) | |
bias = module.bias.data | |
if pre_bn_2 is None: | |
assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" | |
assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False" | |
scale_invstd = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) | |
extra_weight = scale_invstd * pre_bn_1.weight | |
extra_bias = pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd | |
else: | |
assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" | |
assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False" | |
assert pre_bn_2.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" | |
assert pre_bn_2.affine is True, "Unsupport bn_module.affine is False" | |
scale_invstd_1 = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) | |
scale_invstd_2 = pre_bn_2.running_var.add(pre_bn_2.eps).pow(-0.5) | |
extra_weight = scale_invstd_1 * pre_bn_1.weight * scale_invstd_2 * pre_bn_2.weight | |
extra_bias = scale_invstd_2 * pre_bn_2.weight *(pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd_1 - pre_bn_2.running_mean) + pre_bn_2.bias | |
if isinstance(module, nn.Linear): | |
extra_bias = weight @ extra_bias | |
weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) | |
elif isinstance(module, nn.Conv2d): | |
assert weight.shape[2] == 1 and weight.shape[3] == 1 | |
weight = weight.reshape(weight.shape[0], weight.shape[1]) | |
extra_bias = weight @ extra_bias | |
weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) | |
weight = weight.reshape(weight.shape[0], weight.shape[1], 1, 1) | |
bias.add_(extra_bias) | |
module.weight.data = weight | |
module.bias.data = bias | |
NORM_EPS = 1e-5 | |
class ConvBNReLU(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups=1): | |
super(ConvBNReLU, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, | |
padding=1, groups=groups, bias=False) | |
self.norm = nn.BatchNorm2d(out_channels, eps=NORM_EPS) | |
self.act = nn.ReLU(inplace=True) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.norm(x) | |
x = self.act(x) | |
return x | |
def _make_divisible(v, divisor, min_value=None): | |
if min_value is None: | |
min_value = divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
class PatchEmbed(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
stride=1): | |
super(PatchEmbed, self).__init__() | |
norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) | |
if stride == 2: | |
self.avgpool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False) | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False) | |
self.norm = norm_layer(out_channels) | |
elif in_channels != out_channels: | |
self.avgpool = nn.Identity() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False) | |
self.norm = norm_layer(out_channels) | |
else: | |
self.avgpool = nn.Identity() | |
self.conv = nn.Identity() | |
self.norm = nn.Identity() | |
def forward(self, x): | |
return self.norm(self.conv(self.avgpool(x))) | |
class MHCA(nn.Module): | |
""" | |
Multi-Head Convolutional Attention | |
""" | |
def __init__(self, out_channels, head_dim): | |
super(MHCA, self).__init__() | |
norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) | |
self.group_conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, | |
padding=1, groups=out_channels // head_dim, bias=False) | |
self.norm = norm_layer(out_channels) | |
self.act = nn.ReLU(inplace=True) | |
self.projection = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False) | |
def forward(self, x): | |
out = self.group_conv3x3(x) | |
out = self.norm(out) | |
out = self.act(out) | |
out = self.projection(out) | |
return out | |
class Mlp(nn.Module): | |
def __init__(self, in_features, out_features=None, mlp_ratio=None, drop=0., bias=True): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_dim = _make_divisible(in_features * mlp_ratio, 32) | |
self.conv1 = nn.Conv2d(in_features, hidden_dim, kernel_size=1, bias=bias) | |
self.act = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(hidden_dim, out_features, kernel_size=1, bias=bias) | |
self.drop = nn.Dropout(drop) | |
def merge_bn(self, pre_norm): | |
merge_pre_bn(self.conv1, pre_norm) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.conv2(x) | |
x = self.drop(x) | |
return x | |
class NCB(nn.Module): | |
""" | |
Next Convolution Block | |
""" | |
def __init__(self, in_channels, out_channels, stride=1, path_dropout=0, | |
drop=0, head_dim=32, mlp_ratio=3): | |
super(NCB, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) | |
assert out_channels % head_dim == 0 | |
self.patch_embed = PatchEmbed(in_channels, out_channels, stride) | |
self.mhca = MHCA(out_channels, head_dim) | |
self.attention_path_dropout = DropPath(path_dropout) | |
self.norm = norm_layer(out_channels) | |
self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop, bias=True) | |
self.mlp_path_dropout = DropPath(path_dropout) | |
self.is_bn_merged = False | |
def merge_bn(self): | |
if not self.is_bn_merged: | |
self.mlp.merge_bn(self.norm) | |
self.is_bn_merged = True | |
def forward(self, x): | |
x = self.patch_embed(x) | |
x = x + self.attention_path_dropout(self.mhca(x)) | |
if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: | |
out = self.norm(x) | |
else: | |
out = x | |
x = x + self.mlp_path_dropout(self.mlp(out)) | |
return x | |
class E_MHSA(nn.Module): | |
""" | |
Efficient Multi-Head Self Attention | |
""" | |
def __init__(self, dim, out_dim=None, head_dim=32, qkv_bias=True, qk_scale=None, | |
attn_drop=0, proj_drop=0., sr_ratio=1): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim if out_dim is not None else dim | |
self.num_heads = self.dim // head_dim | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.q = nn.Linear(dim, self.dim, bias=qkv_bias) | |
self.k = nn.Linear(dim, self.dim, bias=qkv_bias) | |
self.v = nn.Linear(dim, self.dim, bias=qkv_bias) | |
self.proj = nn.Linear(self.dim, self.out_dim) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
self.N_ratio = sr_ratio ** 2 | |
if sr_ratio > 1: | |
self.sr = nn.AvgPool1d(kernel_size=self.N_ratio, stride=self.N_ratio) | |
self.norm = nn.BatchNorm1d(dim, eps=NORM_EPS) | |
self.is_bn_merged = False | |
def merge_bn(self, pre_bn): | |
merge_pre_bn(self.q, pre_bn) | |
if self.sr_ratio > 1: | |
merge_pre_bn(self.k, pre_bn, self.norm) | |
merge_pre_bn(self.v, pre_bn, self.norm) | |
else: | |
merge_pre_bn(self.k, pre_bn) | |
merge_pre_bn(self.v, pre_bn) | |
self.is_bn_merged = True | |
def forward(self, x): | |
B, N, C = x.shape | |
q = self.q(x) | |
q = q.reshape(B, N, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) | |
if self.sr_ratio > 1: | |
x_ = x.transpose(1, 2) | |
x_ = self.sr(x_) | |
if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: | |
x_ = self.norm(x_) | |
x_ = x_.transpose(1, 2) | |
k = self.k(x_) | |
k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1) | |
v = self.v(x_) | |
v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) | |
else: | |
k = self.k(x) | |
k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1) | |
v = self.v(x) | |
v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) | |
attn = (q @ k) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class NTB(nn.Module): | |
""" | |
Next Transformer Block | |
""" | |
def __init__( | |
self, in_channels, out_channels, path_dropout, stride=1, sr_ratio=1, | |
mlp_ratio=2, head_dim=32, mix_block_ratio=0.75, attn_drop=0, drop=0, | |
): | |
super(NTB, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.mix_block_ratio = mix_block_ratio | |
norm_func = partial(nn.BatchNorm2d, eps=NORM_EPS) | |
self.mhsa_out_channels = _make_divisible(int(out_channels * mix_block_ratio), 32) | |
self.mhca_out_channels = out_channels - self.mhsa_out_channels | |
self.patch_embed = PatchEmbed(in_channels, self.mhsa_out_channels, stride) | |
self.norm1 = norm_func(self.mhsa_out_channels) | |
self.e_mhsa = E_MHSA(self.mhsa_out_channels, head_dim=head_dim, sr_ratio=sr_ratio, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.mhsa_path_dropout = DropPath(path_dropout * mix_block_ratio) | |
self.projection = PatchEmbed(self.mhsa_out_channels, self.mhca_out_channels, stride=1) | |
self.mhca = MHCA(self.mhca_out_channels, head_dim=head_dim) | |
self.mhca_path_dropout = DropPath(path_dropout * (1 - mix_block_ratio)) | |
self.norm2 = norm_func(out_channels) | |
self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop) | |
self.mlp_path_dropout = DropPath(path_dropout) | |
self.is_bn_merged = False | |
def merge_bn(self): | |
if not self.is_bn_merged: | |
self.e_mhsa.merge_bn(self.norm1) | |
self.mlp.merge_bn(self.norm2) | |
self.is_bn_merged = True | |
def forward(self, x): | |
x = self.patch_embed(x) | |
B, C, H, W = x.shape | |
if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: | |
out = self.norm1(x) | |
else: | |
out = x | |
out = rearrange(out, "b c h w -> b (h w) c") # b n c | |
out = self.mhsa_path_dropout(self.e_mhsa(out)) | |
x = x + rearrange(out, "b (h w) c -> b c h w", h=H) | |
out = self.projection(x) | |
out = out + self.mhca_path_dropout(self.mhca(out)) | |
x = torch.cat([x, out], dim=1) | |
if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: | |
out = self.norm2(x) | |
else: | |
out = x | |
x = x + self.mlp_path_dropout(self.mlp(out)) | |
return x | |
class NextViT(nn.Module): | |
def __init__(self, stem_chs, depths, path_dropout, attn_drop=0, drop=0, num_classes=1000, | |
strides=[1, 2, 2, 2], sr_ratios=[8, 4, 2, 1], head_dim=32, mix_block_ratio=0.75, | |
use_checkpoint=False): | |
super(NextViT, self).__init__() | |
self.use_checkpoint = use_checkpoint | |
self.stage_out_channels = [[96] * (depths[0]), | |
[192] * (depths[1] - 1) + [256], | |
[384, 384, 384, 384, 512] * (depths[2] // 5), | |
[768] * (depths[3] - 1) + [1024]] | |
# Next Hybrid Strategy | |
self.stage_block_types = [[NCB] * depths[0], | |
[NCB] * (depths[1] - 1) + [NTB], | |
[NCB, NCB, NCB, NCB, NTB] * (depths[2] // 5), | |
[NCB] * (depths[3] - 1) + [NTB]] | |
self.stem = nn.Sequential( | |
ConvBNReLU(3, stem_chs[0], kernel_size=3, stride=2), | |
ConvBNReLU(stem_chs[0], stem_chs[1], kernel_size=3, stride=1), | |
ConvBNReLU(stem_chs[1], stem_chs[2], kernel_size=3, stride=1), | |
ConvBNReLU(stem_chs[2], stem_chs[2], kernel_size=3, stride=2), | |
) | |
input_channel = stem_chs[-1] | |
features = [] | |
idx = 0 | |
dpr = [x.item() for x in torch.linspace(0, path_dropout, sum(depths))] # stochastic depth decay rule | |
for stage_id in range(len(depths)): | |
numrepeat = depths[stage_id] | |
output_channels = self.stage_out_channels[stage_id] | |
block_types = self.stage_block_types[stage_id] | |
for block_id in range(numrepeat): | |
if strides[stage_id] == 2 and block_id == 0: | |
stride = 2 | |
else: | |
stride = 1 | |
output_channel = output_channels[block_id] | |
block_type = block_types[block_id] | |
if block_type is NCB: | |
layer = NCB(input_channel, output_channel, stride=stride, path_dropout=dpr[idx + block_id], | |
drop=drop, head_dim=head_dim) | |
features.append(layer) | |
elif block_type is NTB: | |
layer = NTB(input_channel, output_channel, path_dropout=dpr[idx + block_id], stride=stride, | |
sr_ratio=sr_ratios[stage_id], head_dim=head_dim, mix_block_ratio=mix_block_ratio, | |
attn_drop=attn_drop, drop=drop) | |
features.append(layer) | |
input_channel = output_channel | |
idx += numrepeat | |
self.features = nn.Sequential(*features) | |
self.norm = nn.BatchNorm2d(output_channel, eps=NORM_EPS) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.proj_head = nn.Sequential( | |
nn.Linear(output_channel, num_classes), | |
) | |
self.stage_out_idx = [sum(depths[:idx + 1]) - 1 for idx in range(len(depths))] | |
print('initialize_weights...') | |
self._initialize_weights() | |
def merge_bn(self): | |
self.eval() | |
for idx, module in self.named_modules(): | |
if isinstance(module, NCB) or isinstance(module, NTB): | |
module.merge_bn() | |
def _initialize_weights(self): | |
for n, m in self.named_modules(): | |
if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm, nn.BatchNorm1d)): | |
nn.init.constant_(m.weight, 1.0) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if hasattr(m, 'bias') and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
trunc_normal_(m.weight, std=.02) | |
if hasattr(m, 'bias') and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x = self.stem(x) | |
for idx, layer in enumerate(self.features): | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(layer, x) | |
else: | |
x = layer(x) | |
x = self.norm(x) | |
x = self.avgpool(x) | |
x = torch.flatten(x, 1) | |
x = self.proj_head(x) | |
return x | |
def nextvit_small(pretrained=False, pretrained_cfg=None, **kwargs): | |
model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 10, 3], path_dropout=0.1, **kwargs) | |
return model | |
def nextvit_base(pretrained=False, pretrained_cfg=None, **kwargs): | |
model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 20, 3], path_dropout=0.2, **kwargs) | |
return model | |
def nextvit_large(pretrained=False, pretrained_cfg=None, **kwargs): | |
model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 30, 3], path_dropout=0.2, **kwargs) | |
return model | |
# end of Next_ViT/classification/nextvit.py | |
def forward_next_vit(pretrained, x): | |
return forward_default(pretrained, x, "forward") | |
def _make_next_vit_backbone( | |
model, | |
hooks=[2, 6, 36, 39], | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
pretrained.model.features[hooks[0]].register_forward_hook(get_activation("1")) | |
pretrained.model.features[hooks[1]].register_forward_hook(get_activation("2")) | |
pretrained.model.features[hooks[2]].register_forward_hook(get_activation("3")) | |
pretrained.model.features[hooks[3]].register_forward_hook(get_activation("4")) | |
pretrained.activations = activations | |
return pretrained | |
def _make_pretrained_next_vit_large_6m(hooks=None): | |
model = timm.create_model("nextvit_large") | |
hooks = [2, 6, 36, 39] if hooks == None else hooks | |
return _make_next_vit_backbone( | |
model, | |
hooks=hooks, | |
) | |