File size: 19,015 Bytes
e04dce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import timm

import torch.nn as nn

from pathlib import Path
from .utils import activations, forward_default, get_activation

# thygate: just dropped the file in place here together with the single function import merge_pre_bn from Next_ViT repo which is no longer required :

#file = open( Path.joinpath(Path.cwd(), "/extensions/stable-diffusion-webui-depthmap-script/midas/externals/Next_ViT/classification/nextvit.py"), "r")
#source_code = file.read().replace(" utils", " externals.Next_ViT.classification.utils")
#exec(source_code)

#start of file : Next_ViT/classification/nextvit.py :

# Copyright (c) ByteDance Inc. All rights reserved.
from functools import partial

import torch
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from torch import nn

# function from Next_ViT/classification/utils.py : merge_pre_bn
# copied here to get rid of Next_ViT repo dependancy
def merge_pre_bn(module, pre_bn_1, pre_bn_2=None):
    """ Merge pre BN to reduce inference runtime.

    """
    weight = module.weight.data
    if module.bias is None:
        zeros = torch.zeros(module.out_channels, device=weight.device).type(weight.type())
        module.bias = nn.Parameter(zeros)
    bias = module.bias.data
    if pre_bn_2 is None:
        assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False"
        assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False"

        scale_invstd = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5)
        extra_weight = scale_invstd * pre_bn_1.weight
        extra_bias = pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd
    else:
        assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False"
        assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False"

        assert pre_bn_2.track_running_stats is True, "Unsupport bn_module.track_running_stats is False"
        assert pre_bn_2.affine is True, "Unsupport bn_module.affine is False"

        scale_invstd_1 = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5)
        scale_invstd_2 = pre_bn_2.running_var.add(pre_bn_2.eps).pow(-0.5)

        extra_weight = scale_invstd_1 * pre_bn_1.weight * scale_invstd_2 * pre_bn_2.weight
        extra_bias = scale_invstd_2 * pre_bn_2.weight *(pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd_1 - pre_bn_2.running_mean) + pre_bn_2.bias

    if isinstance(module, nn.Linear):
        extra_bias = weight @ extra_bias
        weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight))
    elif isinstance(module, nn.Conv2d):
        assert weight.shape[2] == 1 and weight.shape[3] == 1
        weight = weight.reshape(weight.shape[0], weight.shape[1])
        extra_bias = weight @ extra_bias
        weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight))
        weight = weight.reshape(weight.shape[0], weight.shape[1], 1, 1)
    bias.add_(extra_bias)

    module.weight.data = weight
    module.bias.data = bias



NORM_EPS = 1e-5


class ConvBNReLU(nn.Module):
    def __init__(

            self,

            in_channels,

            out_channels,

            kernel_size,

            stride,

            groups=1):
        super(ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
                              padding=1, groups=groups, bias=False)
        self.norm = nn.BatchNorm2d(out_channels, eps=NORM_EPS)
        self.act = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        x = self.act(x)
        return x


def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class PatchEmbed(nn.Module):
    def __init__(self,

                 in_channels,

                 out_channels,

                 stride=1):
        super(PatchEmbed, self).__init__()
        norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS)
        if stride == 2:
            self.avgpool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False)
            self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)
            self.norm = norm_layer(out_channels)
        elif in_channels != out_channels:
            self.avgpool = nn.Identity()
            self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)
            self.norm = norm_layer(out_channels)
        else:
            self.avgpool = nn.Identity()
            self.conv = nn.Identity()
            self.norm = nn.Identity()

    def forward(self, x):
        return self.norm(self.conv(self.avgpool(x)))


class MHCA(nn.Module):
    """

    Multi-Head Convolutional Attention

    """
    def __init__(self, out_channels, head_dim):
        super(MHCA, self).__init__()
        norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS)
        self.group_conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1,
                                       padding=1, groups=out_channels // head_dim, bias=False)
        self.norm = norm_layer(out_channels)
        self.act = nn.ReLU(inplace=True)
        self.projection = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False)

    def forward(self, x):
        out = self.group_conv3x3(x)
        out = self.norm(out)
        out = self.act(out)
        out = self.projection(out)
        return out


class Mlp(nn.Module):
    def __init__(self, in_features, out_features=None, mlp_ratio=None, drop=0., bias=True):
        super().__init__()
        out_features = out_features or in_features
        hidden_dim = _make_divisible(in_features * mlp_ratio, 32)
        self.conv1 = nn.Conv2d(in_features, hidden_dim, kernel_size=1, bias=bias)
        self.act = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(hidden_dim, out_features, kernel_size=1, bias=bias)
        self.drop = nn.Dropout(drop)

    def merge_bn(self, pre_norm):
        merge_pre_bn(self.conv1, pre_norm)

    def forward(self, x):
        x = self.conv1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.conv2(x)
        x = self.drop(x)
        return x


class NCB(nn.Module):
    """

    Next Convolution Block

    """
    def __init__(self, in_channels, out_channels, stride=1, path_dropout=0,

                 drop=0, head_dim=32, mlp_ratio=3):
        super(NCB, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS)
        assert out_channels % head_dim == 0

        self.patch_embed = PatchEmbed(in_channels, out_channels, stride)
        self.mhca = MHCA(out_channels, head_dim)
        self.attention_path_dropout = DropPath(path_dropout)

        self.norm = norm_layer(out_channels)
        self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop, bias=True)
        self.mlp_path_dropout = DropPath(path_dropout)
        self.is_bn_merged = False

    def merge_bn(self):
        if not self.is_bn_merged:
            self.mlp.merge_bn(self.norm)
            self.is_bn_merged = True

    def forward(self, x):
        x = self.patch_embed(x)
        x = x + self.attention_path_dropout(self.mhca(x))
        if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged:
            out = self.norm(x)
        else:
            out = x
        x = x + self.mlp_path_dropout(self.mlp(out))
        return x


class E_MHSA(nn.Module):
    """

    Efficient Multi-Head Self Attention

    """
    def __init__(self, dim, out_dim=None, head_dim=32, qkv_bias=True, qk_scale=None,

                 attn_drop=0, proj_drop=0., sr_ratio=1):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim if out_dim is not None else dim
        self.num_heads = self.dim // head_dim
        self.scale = qk_scale or head_dim ** -0.5
        self.q = nn.Linear(dim, self.dim, bias=qkv_bias)
        self.k = nn.Linear(dim, self.dim, bias=qkv_bias)
        self.v = nn.Linear(dim, self.dim, bias=qkv_bias)
        self.proj = nn.Linear(self.dim, self.out_dim)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        self.N_ratio = sr_ratio ** 2
        if sr_ratio > 1:
            self.sr = nn.AvgPool1d(kernel_size=self.N_ratio, stride=self.N_ratio)
            self.norm = nn.BatchNorm1d(dim, eps=NORM_EPS)
        self.is_bn_merged = False

    def merge_bn(self, pre_bn):
        merge_pre_bn(self.q, pre_bn)
        if self.sr_ratio > 1:
            merge_pre_bn(self.k, pre_bn, self.norm)
            merge_pre_bn(self.v, pre_bn, self.norm)
        else:
            merge_pre_bn(self.k, pre_bn)
            merge_pre_bn(self.v, pre_bn)
        self.is_bn_merged = True

    def forward(self, x):
        B, N, C = x.shape
        q = self.q(x)
        q = q.reshape(B, N, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.transpose(1, 2)
            x_ = self.sr(x_)
            if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged:
                x_ = self.norm(x_)
            x_ = x_.transpose(1, 2)
            k = self.k(x_)
            k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1)
            v = self.v(x_)
            v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3)
        else:
            k = self.k(x)
            k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1)
            v = self.v(x)
            v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3)
        attn = (q @ k) * self.scale

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class NTB(nn.Module):
    """

    Next Transformer Block

    """
    def __init__(

            self, in_channels, out_channels, path_dropout, stride=1, sr_ratio=1,

            mlp_ratio=2, head_dim=32, mix_block_ratio=0.75, attn_drop=0, drop=0,

    ):
        super(NTB, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.mix_block_ratio = mix_block_ratio
        norm_func = partial(nn.BatchNorm2d, eps=NORM_EPS)

        self.mhsa_out_channels = _make_divisible(int(out_channels * mix_block_ratio), 32)
        self.mhca_out_channels = out_channels - self.mhsa_out_channels

        self.patch_embed = PatchEmbed(in_channels, self.mhsa_out_channels, stride)
        self.norm1 = norm_func(self.mhsa_out_channels)
        self.e_mhsa = E_MHSA(self.mhsa_out_channels, head_dim=head_dim, sr_ratio=sr_ratio,
                             attn_drop=attn_drop, proj_drop=drop)
        self.mhsa_path_dropout = DropPath(path_dropout * mix_block_ratio)

        self.projection = PatchEmbed(self.mhsa_out_channels, self.mhca_out_channels, stride=1)
        self.mhca = MHCA(self.mhca_out_channels, head_dim=head_dim)
        self.mhca_path_dropout = DropPath(path_dropout * (1 - mix_block_ratio))

        self.norm2 = norm_func(out_channels)
        self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop)
        self.mlp_path_dropout = DropPath(path_dropout)

        self.is_bn_merged = False

    def merge_bn(self):
        if not self.is_bn_merged:
            self.e_mhsa.merge_bn(self.norm1)
            self.mlp.merge_bn(self.norm2)
            self.is_bn_merged = True

    def forward(self, x):
        x = self.patch_embed(x)
        B, C, H, W = x.shape
        if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged:
            out = self.norm1(x)
        else:
            out = x
        out = rearrange(out, "b c h w -> b (h w) c")  # b n c
        out = self.mhsa_path_dropout(self.e_mhsa(out))
        x = x + rearrange(out, "b (h w) c -> b c h w", h=H)

        out = self.projection(x)
        out = out + self.mhca_path_dropout(self.mhca(out))
        x = torch.cat([x, out], dim=1)

        if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged:
            out = self.norm2(x)
        else:
            out = x
        x = x + self.mlp_path_dropout(self.mlp(out))
        return x


class NextViT(nn.Module):
    def __init__(self, stem_chs, depths, path_dropout, attn_drop=0, drop=0, num_classes=1000,

                 strides=[1, 2, 2, 2], sr_ratios=[8, 4, 2, 1], head_dim=32, mix_block_ratio=0.75,

                 use_checkpoint=False):
        super(NextViT, self).__init__()
        self.use_checkpoint = use_checkpoint

        self.stage_out_channels = [[96] * (depths[0]),
                                   [192] * (depths[1] - 1) + [256],
                                   [384, 384, 384, 384, 512] * (depths[2] // 5),
                                   [768] * (depths[3] - 1) + [1024]]

        # Next Hybrid Strategy
        self.stage_block_types = [[NCB] * depths[0],
                                  [NCB] * (depths[1] - 1) + [NTB],
                                  [NCB, NCB, NCB, NCB, NTB] * (depths[2] // 5),
                                  [NCB] * (depths[3] - 1) + [NTB]]

        self.stem = nn.Sequential(
            ConvBNReLU(3, stem_chs[0], kernel_size=3, stride=2),
            ConvBNReLU(stem_chs[0], stem_chs[1], kernel_size=3, stride=1),
            ConvBNReLU(stem_chs[1], stem_chs[2], kernel_size=3, stride=1),
            ConvBNReLU(stem_chs[2], stem_chs[2], kernel_size=3, stride=2),
        )
        input_channel = stem_chs[-1]
        features = []
        idx = 0
        dpr = [x.item() for x in torch.linspace(0, path_dropout, sum(depths))]  # stochastic depth decay rule
        for stage_id in range(len(depths)):
            numrepeat = depths[stage_id]
            output_channels = self.stage_out_channels[stage_id]
            block_types = self.stage_block_types[stage_id]
            for block_id in range(numrepeat):
                if strides[stage_id] == 2 and block_id == 0:
                    stride = 2
                else:
                    stride = 1
                output_channel = output_channels[block_id]
                block_type = block_types[block_id]
                if block_type is NCB:
                    layer = NCB(input_channel, output_channel, stride=stride, path_dropout=dpr[idx + block_id],
                                drop=drop, head_dim=head_dim)
                    features.append(layer)
                elif block_type is NTB:
                    layer = NTB(input_channel, output_channel, path_dropout=dpr[idx + block_id], stride=stride,
                                sr_ratio=sr_ratios[stage_id], head_dim=head_dim, mix_block_ratio=mix_block_ratio,
                                attn_drop=attn_drop, drop=drop)
                    features.append(layer)
                input_channel = output_channel
            idx += numrepeat
        self.features = nn.Sequential(*features)

        self.norm = nn.BatchNorm2d(output_channel, eps=NORM_EPS)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.proj_head = nn.Sequential(
            nn.Linear(output_channel, num_classes),
        )

        self.stage_out_idx = [sum(depths[:idx + 1]) - 1 for idx in range(len(depths))]
        print('initialize_weights...')
        self._initialize_weights()

    def merge_bn(self):
        self.eval()
        for idx, module in self.named_modules():
            if isinstance(module, NCB) or isinstance(module, NTB):
                module.merge_bn()

    def _initialize_weights(self):
        for n, m in self.named_modules():
            if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm, nn.BatchNorm1d)):
                nn.init.constant_(m.weight, 1.0)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if hasattr(m, 'bias') and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Conv2d):
                trunc_normal_(m.weight, std=.02)
                if hasattr(m, 'bias') and m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.stem(x)
        for idx, layer in enumerate(self.features):
            if self.use_checkpoint:
                x = checkpoint.checkpoint(layer, x)
            else:
                x = layer(x)
        x = self.norm(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.proj_head(x)
        return x


@register_model
def nextvit_small(pretrained=False, pretrained_cfg=None, **kwargs):
    model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 10, 3], path_dropout=0.1, **kwargs)
    return model


@register_model
def nextvit_base(pretrained=False, pretrained_cfg=None, **kwargs):
    model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 20, 3], path_dropout=0.2, **kwargs)
    return model


@register_model
def nextvit_large(pretrained=False, pretrained_cfg=None, **kwargs):
    model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 30, 3], path_dropout=0.2, **kwargs)
    return model

# end of Next_ViT/classification/nextvit.py


def forward_next_vit(pretrained, x):
    return forward_default(pretrained, x, "forward")


def _make_next_vit_backbone(

        model,

        hooks=[2, 6, 36, 39],

):
    pretrained = nn.Module()

    pretrained.model = model
    pretrained.model.features[hooks[0]].register_forward_hook(get_activation("1"))
    pretrained.model.features[hooks[1]].register_forward_hook(get_activation("2"))
    pretrained.model.features[hooks[2]].register_forward_hook(get_activation("3"))
    pretrained.model.features[hooks[3]].register_forward_hook(get_activation("4"))

    pretrained.activations = activations

    return pretrained


def _make_pretrained_next_vit_large_6m(hooks=None):
    model = timm.create_model("nextvit_large")

    hooks = [2, 6, 36, 39] if hooks == None else hooks
    return _make_next_vit_backbone(
        model,
        hooks=hooks,
    )