Spaces:
Running
Running
File size: 21,830 Bytes
3353605 c1c3142 3353605 c1c3142 89240e9 c1c3142 89240e9 c1c3142 89240e9 c1c3142 89240e9 c1c3142 3353605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline
from langchain.prompts import PromptTemplate
import time
# Global model cache
MODEL_CACHE = {
"model": None,
"tokenizer": None,
"init_lock": threading.Lock(),
"model_name": None
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
# Model configuration dictionary
MODEL_CONFIG = {
"Llama 2 Chat": {
"name": "TheBloke/Llama-2-7B-Chat-GGUF",
"description": "Llama 2 7B Chat model with good general performance",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"TinyLlama Chat": {
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
"description": "Compact 1.1B parameter model, fast but less powerful",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Mistral Instruct": {
"name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
"description": "7B instruction-tuned model with excellent reasoning",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Phi-4 Mini Instruct": {
"name": "microsoft/Phi-4-mini-instruct",
"description": "Compact Microsoft model with strong instruction following",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Coder Instruct": {
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
"description": "1.3B model specialized for code understanding",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Lite Chat": {
"name": "deepseek-ai/DeepSeek-V2-Lite-Chat",
"description": "Light but powerful chat model from DeepSeek",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Qwen2.5 Coder Instruct": {
"name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF",
"description": "3B model specialized for code and technical applications",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"DeepSeek Distill Qwen": {
"name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"description": "1.5B distilled model with good balance of speed and quality",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
},
"Flan T5 Small": {
"name": "google/flan-t5-small",
"description": "Lightweight T5 model optimized for instruction following",
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
"is_t5": True
}
}
def initialize_model_once(model_key):
"""Initialize the model once and cache it"""
with MODEL_CACHE["init_lock"]:
current_model = MODEL_CACHE["model_name"]
if MODEL_CACHE["model"] is None or current_model != model_key:
# Clear previous model from memory if any
if MODEL_CACHE["model"] is not None:
del MODEL_CACHE["model"]
del MODEL_CACHE["tokenizer"]
torch.cuda.empty_cache() if torch.cuda.is_available() else None
model_info = MODEL_CONFIG[model_key]
model_name = model_info["name"]
MODEL_CACHE["model_name"] = model_key
# Handle T5 models separately
if model_info.get("is_t5", False):
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=model_info["dtype"],
device_map="auto",
low_cpu_mem_usage=True
)
else:
# Load tokenizer and model with appropriate configuration
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=model_info["dtype"],
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=True
)
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False)
def create_llm_pipeline(model_key):
"""Create a new pipeline using the specified model"""
tokenizer, model, is_t5 = initialize_model_once(model_key)
# Create appropriate pipeline based on model type
if is_t5:
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
temperature=0.3,
top_p=0.9,
return_full_text=False,
)
else:
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
temperature=0.3,
top_p=0.9,
top_k=30,
repetition_penalty=1.2,
return_full_text=False,
)
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility
return HuggingFacePipeline(pipeline=pipe)
def create_conversational_chain(db, file_path, model_key):
llm = create_llm_pipeline(model_key)
# Load the file into pandas to enable code execution for data analysis
df = pd.read_csv(file_path)
# Create improved prompt template that focuses on direct answers, not code
template = """
Berikut ini adalah informasi tentang file CSV:
Kolom-kolom dalam file: {columns}
Beberapa baris pertama:
{sample_data}
Konteks tambahan dari vector database:
{context}
Pertanyaan: {question}
INSTRUKSI PENTING:
1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia.
2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya.
3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada.
4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer).
5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir.
Jawaban:
"""
PROMPT = PromptTemplate(
template=template,
input_variables=["columns", "sample_data", "context", "question"]
)
# Create retriever
retriever = db.as_retriever(search_kwargs={"k": 3}) # Reduced k for better performance
# Process query with better error handling
def process_query(query, chat_history):
try:
# Get information from dataframe for context
columns_str = ", ".join(df.columns.tolist())
sample_data = df.head(2).to_string() # Reduced to 2 rows for performance
# Get context from vector database
docs = retriever.get_relevant_documents(query)
context = "\n\n".join([doc.page_content for doc in docs])
# Dynamically calculate answers for common statistical queries
def preprocess_query():
query_lower = query.lower()
result = None
# Handle statistical queries directly
if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
except:
pass
elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
except:
pass
elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
except:
pass
elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Total {col} adalah {df[col].sum():.2f}"
except:
pass
elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
result = f"Jumlah baris data adalah {len(df)}"
elif "kolom" in query_lower or "field" in query_lower:
if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
return result
# Try direct calculation first
direct_answer = preprocess_query()
if direct_answer:
return {"answer": direct_answer}
# If no direct calculation, use the LLM
chain = LLMChain(llm=llm, prompt=PROMPT)
raw_result = chain.run(
columns=columns_str,
sample_data=sample_data,
context=context,
question=query
)
# Clean the result
cleaned_result = raw_result.strip()
# If result is empty after cleaning, use a fallback
if not cleaned_result:
return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."}
return {"answer": cleaned_result}
except Exception as e:
import traceback
print(f"Error in process_query: {str(e)}")
print(traceback.format_exc())
return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"}
return process_query
class ChatBot:
def __init__(self, session_id, model_key="DeepSeek Coder Instruct"):
self.session_id = session_id
self.chat_history = []
self.chain = None
self.user_dir = f"user_data/{session_id}"
self.csv_file_path = None
self.model_key = model_key
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file, model_key=None):
if model_key:
self.model_key = model_key
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
self.csv_file_path = file_path
# Copy to user directory
user_file_path = f"{self.user_dir}/uploaded.csv"
# Verify the CSV can be loaded
try:
df = pd.read_csv(file_path)
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
# Save a copy in user directory
df.to_csv(user_file_path, index=False)
self.csv_file_path = user_file_path
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Load document with reduced chunk size for better memory usage
try:
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
'delimiter': ','})
data = loader.load()
print(f"Documents loaded: {len(data)}")
except Exception as e:
return f"Error loading documents: {str(e)}"
# Create vector database with optimized settings
try:
db_path = f"{self.user_dir}/db_faiss"
# Use CPU-friendly embeddings with smaller dimensions
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'}
)
db = FAISS.from_documents(data, embeddings)
db.save_local(db_path)
print(f"Vector database created at {db_path}")
except Exception as e:
return f"Error creating vector database: {str(e)}"
# Create custom chain
try:
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
print(f"Chain created successfully using model: {self.model_key}")
except Exception as e:
return f"Error creating chain: {str(e)}"
# Add basic file info to chat history for context
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom menggunakan model {self.model_key}. Kolom: {', '.join(df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return f"File CSV berhasil diproses dengan model {self.model_key}! Anda dapat mulai chat dengan model untuk analisis data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def change_model(self, model_key):
"""Change the model being used and recreate the chain if necessary"""
if model_key == self.model_key:
return f"Model {model_key} sudah digunakan."
self.model_key = model_key
# If we have an active session with a file already loaded, recreate the chain
if self.csv_file_path:
try:
# Load existing database
db_path = f"{self.user_dir}/db_faiss"
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'}
)
# Tambahkan flag allow_dangerous_deserialization=True
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
# Create new chain with the selected model
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
return f"Model berhasil diubah ke {model_key}."
except Exception as e:
return f"Error mengubah model: {str(e)}"
else:
return f"Model diubah ke {model_key}. Silakan upload file CSV untuk memulai."
def chat(self, message, history):
if self.chain is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Process the question with the chain
result = self.chain(message, self.chat_history)
# Get the answer with fallback
answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.")
# Ensure we never return empty
if not answer or answer.strip() == "":
answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain."
# Update internal chat history
self.chat_history.append((message, answer))
# Return just the answer for Gradio
return answer
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code
def create_gradio_interface():
with gr.Blocks(title="Chat with CSV using AI Models") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
# Get model choices
model_choices = list(MODEL_CONFIG.keys())
default_model = "DeepSeek Coder Instruct" # Default model
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>")
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
# Model selection accordion BEFORE process button
with gr.Accordion("Pilih Model AI", open=True):
model_dropdown = gr.Dropdown(
label="Model",
choices=model_choices,
value=default_model
)
model_info = gr.Markdown(
value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
)
# Process button AFTER the accordion
process_button = gr.Button("Proses CSV")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pesan Anda",
placeholder="Tanyakan tentang data CSV Anda...",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Update model info when selection changes
def update_model_info(model_key):
return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}"
model_dropdown.change(
fn=update_model_info,
inputs=[model_dropdown],
outputs=[model_info]
)
# Process file handler
def handle_process_file(file, model_key, sess_id):
chatbot = ChatBot(sess_id, model_key)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, model_dropdown, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Change model handler
def handle_model_change(model_key, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id, model_key)
return chatbot, [(None, f"Model diatur ke {model_key}. Silakan upload file CSV.")]
result = chatbot.change_model(model_key)
return chatbot, chatbot.chat_history + [(None, result)]
model_dropdown.change(
fn=handle_model_change,
inputs=[model_dropdown, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Chat handlers
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Clear chat handler
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
demo = create_gradio_interface()
demo.launch(share=True) |