File size: 21,830 Bytes
3353605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c3142
 
 
3353605
c1c3142
89240e9
c1c3142
 
 
 
 
 
 
 
 
89240e9
c1c3142
 
89240e9
c1c3142
 
89240e9
c1c3142
 
 
 
 
3353605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline
from langchain.prompts import PromptTemplate
import time

# Global model cache
MODEL_CACHE = {
    "model": None,
    "tokenizer": None,
    "init_lock": threading.Lock(),
    "model_name": None
}

# Create directories for user data
os.makedirs("user_data", exist_ok=True)

# Model configuration dictionary
MODEL_CONFIG = {
    "Llama 2 Chat": {
        "name": "TheBloke/Llama-2-7B-Chat-GGUF",
        "description": "Llama 2 7B Chat model with good general performance",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "TinyLlama Chat": {
        "name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
        "description": "Compact 1.1B parameter model, fast but less powerful",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "Mistral Instruct": {
        "name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
        "description": "7B instruction-tuned model with excellent reasoning",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "Phi-4 Mini Instruct": {
        "name": "microsoft/Phi-4-mini-instruct",
        "description": "Compact Microsoft model with strong instruction following",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "DeepSeek Coder Instruct": {
        "name": "deepseek-ai/deepseek-coder-1.3b-instruct",
        "description": "1.3B model specialized for code understanding",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "DeepSeek Lite Chat": {
        "name": "deepseek-ai/DeepSeek-V2-Lite-Chat",
        "description": "Light but powerful chat model from DeepSeek",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "Qwen2.5 Coder Instruct": {
        "name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF",
        "description": "3B model specialized for code and technical applications",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "DeepSeek Distill Qwen": {
        "name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
        "description": "1.5B distilled model with good balance of speed and quality",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32
    },
    "Flan T5 Small": {
        "name": "google/flan-t5-small",
        "description": "Lightweight T5 model optimized for instruction following",
        "dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
        "is_t5": True
    }
}

def initialize_model_once(model_key):
    """Initialize the model once and cache it"""
    with MODEL_CACHE["init_lock"]:
        current_model = MODEL_CACHE["model_name"]
        if MODEL_CACHE["model"] is None or current_model != model_key:
            # Clear previous model from memory if any
            if MODEL_CACHE["model"] is not None:
                del MODEL_CACHE["model"]
                del MODEL_CACHE["tokenizer"]
                torch.cuda.empty_cache() if torch.cuda.is_available() else None
                
            model_info = MODEL_CONFIG[model_key]
            model_name = model_info["name"]
            MODEL_CACHE["model_name"] = model_key
            
            # Handle T5 models separately
            if model_info.get("is_t5", False):
                MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
                MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
                    model_name,
                    torch_dtype=model_info["dtype"],
                    device_map="auto",
                    low_cpu_mem_usage=True
                )
            else:
                # Load tokenizer and model with appropriate configuration
                MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
                MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    torch_dtype=model_info["dtype"],
                    device_map="auto",
                    low_cpu_mem_usage=True,
                    trust_remote_code=True
                )

    return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False)

def create_llm_pipeline(model_key):
    """Create a new pipeline using the specified model"""
    tokenizer, model, is_t5 = initialize_model_once(model_key)

    # Create appropriate pipeline based on model type
    if is_t5:
        pipe = pipeline(
            "text2text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=256,
            temperature=0.3,
            top_p=0.9,
            return_full_text=False,
        )
    else:
        pipe = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=256,
            temperature=0.3,
            top_p=0.9,
            top_k=30,
            repetition_penalty=1.2,
            return_full_text=False,
        )

    # Wrap pipeline in HuggingFacePipeline for LangChain compatibility
    return HuggingFacePipeline(pipeline=pipe)

def create_conversational_chain(db, file_path, model_key):
    llm = create_llm_pipeline(model_key)
    
    # Load the file into pandas to enable code execution for data analysis
    df = pd.read_csv(file_path)
    
    # Create improved prompt template that focuses on direct answers, not code
    template = """
    Berikut ini adalah informasi tentang file CSV:
    
    Kolom-kolom dalam file: {columns}
    
    Beberapa baris pertama:
    {sample_data}
    
    Konteks tambahan dari vector database:
    {context}
    
    Pertanyaan: {question}
    
    INSTRUKSI PENTING:
    1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia.
    2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya.
    3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada.
    4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer).
    5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir.
    
    Jawaban:
    """
    
    PROMPT = PromptTemplate(
        template=template,
        input_variables=["columns", "sample_data", "context", "question"]
    )
    
    # Create retriever
    retriever = db.as_retriever(search_kwargs={"k": 3})  # Reduced k for better performance
    
    # Process query with better error handling
    def process_query(query, chat_history):
        try:
            # Get information from dataframe for context
            columns_str = ", ".join(df.columns.tolist())
            sample_data = df.head(2).to_string()  # Reduced to 2 rows for performance
            
            # Get context from vector database
            docs = retriever.get_relevant_documents(query)
            context = "\n\n".join([doc.page_content for doc in docs])
            
            # Dynamically calculate answers for common statistical queries
            def preprocess_query():
                query_lower = query.lower()
                result = None
                
                # Handle statistical queries directly
                if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
                            except:
                                pass
                
                elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
                            except:
                                pass
                
                elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
                            except:
                                pass
                
                elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Total {col} adalah {df[col].sum():.2f}"
                            except:
                                pass
                
                elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
                    result = f"Jumlah baris data adalah {len(df)}"
                
                elif "kolom" in query_lower or "field" in query_lower:
                    if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
                        result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
                
                return result
            
            # Try direct calculation first
            direct_answer = preprocess_query()
            if direct_answer:
                return {"answer": direct_answer}
            
            # If no direct calculation, use the LLM
            chain = LLMChain(llm=llm, prompt=PROMPT)
            raw_result = chain.run(
                columns=columns_str,
                sample_data=sample_data,
                context=context,
                question=query
            )
            
            # Clean the result
            cleaned_result = raw_result.strip()
            
            # If result is empty after cleaning, use a fallback
            if not cleaned_result:
                return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."}
                
            return {"answer": cleaned_result}
        except Exception as e:
            import traceback
            print(f"Error in process_query: {str(e)}")
            print(traceback.format_exc())
            return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"}
    
    return process_query

class ChatBot:
    def __init__(self, session_id, model_key="DeepSeek Coder Instruct"):
        self.session_id = session_id
        self.chat_history = []
        self.chain = None
        self.user_dir = f"user_data/{session_id}"
        self.csv_file_path = None
        self.model_key = model_key
        os.makedirs(self.user_dir, exist_ok=True)

    def process_file(self, file, model_key=None):
        if model_key:
            self.model_key = model_key
            
        if file is None:
            return "Mohon upload file CSV terlebih dahulu."

        try:
            # Handle file from Gradio
            file_path = file.name if hasattr(file, 'name') else str(file)
            self.csv_file_path = file_path

            # Copy to user directory
            user_file_path = f"{self.user_dir}/uploaded.csv"

            # Verify the CSV can be loaded
            try:
                df = pd.read_csv(file_path)
                print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")

                # Save a copy in user directory
                df.to_csv(user_file_path, index=False)
                self.csv_file_path = user_file_path
            except Exception as e:
                return f"Error membaca CSV: {str(e)}"

            # Load document with reduced chunk size for better memory usage
            try:
                loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
                    'delimiter': ','})
                data = loader.load()
                print(f"Documents loaded: {len(data)}")
            except Exception as e:
                return f"Error loading documents: {str(e)}"

            # Create vector database with optimized settings
            try:
                db_path = f"{self.user_dir}/db_faiss"
                
                # Use CPU-friendly embeddings with smaller dimensions
                embeddings = HuggingFaceEmbeddings(
                    model_name='sentence-transformers/all-MiniLM-L6-v2',
                    model_kwargs={'device': 'cpu'}
                )

                db = FAISS.from_documents(data, embeddings)
                db.save_local(db_path)
                print(f"Vector database created at {db_path}")
            except Exception as e:
                return f"Error creating vector database: {str(e)}"

            # Create custom chain
            try:
                self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
                print(f"Chain created successfully using model: {self.model_key}")
            except Exception as e:
                return f"Error creating chain: {str(e)}"

            # Add basic file info to chat history for context
            file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom menggunakan model {self.model_key}. Kolom: {', '.join(df.columns.tolist())}"
            self.chat_history.append(("System", file_info))

            return f"File CSV berhasil diproses dengan model {self.model_key}! Anda dapat mulai chat dengan model untuk analisis data."
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error pemrosesan file: {str(e)}"

    def change_model(self, model_key):
        """Change the model being used and recreate the chain if necessary"""
        if model_key == self.model_key:
            return f"Model {model_key} sudah digunakan."
        
        self.model_key = model_key
    
        # If we have an active session with a file already loaded, recreate the chain
        if self.csv_file_path:
            try:
                # Load existing database
                db_path = f"{self.user_dir}/db_faiss"
                embeddings = HuggingFaceEmbeddings(
                    model_name='sentence-transformers/all-MiniLM-L6-v2',
                    model_kwargs={'device': 'cpu'}
                )
            
                # Tambahkan flag allow_dangerous_deserialization=True
                db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
            
                # Create new chain with the selected model
                self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key)
            
                return f"Model berhasil diubah ke {model_key}."
            except Exception as e:
                return f"Error mengubah model: {str(e)}"
        else:
            return f"Model diubah ke {model_key}. Silakan upload file CSV untuk memulai."

    def chat(self, message, history):
        if self.chain is None:
            return "Mohon upload file CSV terlebih dahulu."

        try:
            # Process the question with the chain
            result = self.chain(message, self.chat_history)

            # Get the answer with fallback
            answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.")

            # Ensure we never return empty
            if not answer or answer.strip() == "":
                answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain."
            
            # Update internal chat history
            self.chat_history.append((message, answer))

            # Return just the answer for Gradio
            return answer
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error: {str(e)}"

# UI Code
def create_gradio_interface():
    with gr.Blocks(title="Chat with CSV using AI Models") as interface:
        session_id = gr.State(lambda: str(uuid.uuid4()))
        chatbot_state = gr.State(lambda: None)
        
        # Get model choices
        model_choices = list(MODEL_CONFIG.keys())
        default_model = "DeepSeek Coder Instruct"  # Default model

        gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>")
        gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")

        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload CSV Anda",
                    file_types=[".csv"]
                )
                
                # Model selection accordion BEFORE process button
                with gr.Accordion("Pilih Model AI", open=True):
                    model_dropdown = gr.Dropdown(
                        label="Model",
                        choices=model_choices,
                        value=default_model
                    )
                    model_info = gr.Markdown(
                        value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}"
                    )
                
                # Process button AFTER the accordion
                process_button = gr.Button("Proses CSV")

            with gr.Column(scale=2):
                chatbot_interface = gr.Chatbot(
                    label="Riwayat Chat",
                    height=400
                )
                message_input = gr.Textbox(
                    label="Ketik pesan Anda",
                    placeholder="Tanyakan tentang data CSV Anda...",
                    lines=2
                )
                submit_button = gr.Button("Kirim")
                clear_button = gr.Button("Bersihkan Chat")

        # Update model info when selection changes
        def update_model_info(model_key):
            return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}"
            
        model_dropdown.change(
            fn=update_model_info,
            inputs=[model_dropdown],
            outputs=[model_info]
        )
        
        # Process file handler
        def handle_process_file(file, model_key, sess_id):
            chatbot = ChatBot(sess_id, model_key)
            result = chatbot.process_file(file)
            return chatbot, [(None, result)]

        process_button.click(
            fn=handle_process_file,
            inputs=[file_input, model_dropdown, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        # Change model handler
        def handle_model_change(model_key, chatbot, sess_id):
            if chatbot is None:
                chatbot = ChatBot(sess_id, model_key)
                return chatbot, [(None, f"Model diatur ke {model_key}. Silakan upload file CSV.")]
            
            result = chatbot.change_model(model_key)
            return chatbot, chatbot.chat_history + [(None, result)]
            
        model_dropdown.change(
            fn=handle_model_change,
            inputs=[model_dropdown, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        # Chat handlers
        def user_message_submitted(message, history, chatbot, sess_id):
            history = history + [(message, None)]
            return history, "", chatbot, sess_id

        def bot_response(history, chatbot, sess_id):
            if chatbot is None:
                chatbot = ChatBot(sess_id)
                history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
                return chatbot, history

            user_message = history[-1][0]
            response = chatbot.chat(user_message, history[:-1])
            history[-1] = (user_message, response)
            return chatbot, history

        submit_button.click(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        message_input.submit(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        # Clear chat handler
        def handle_clear_chat(chatbot):
            if chatbot is not None:
                chatbot.chat_history = []
            return chatbot, []

        clear_button.click(
            fn=handle_clear_chat,
            inputs=[chatbot_state],
            outputs=[chatbot_state, chatbot_interface]
        )

    return interface

# Launch the interface
demo = create_gradio_interface()
demo.launch(share=True)