DigitClassifier / neural_network.py
hkanumilli's picture
first test run
6c0d444
raw
history blame
1.26 kB
import torch.nn as nn
import torch.nn.functional as F
class MNISTNetwork(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(784, 128)
self.layer2 = nn.Linear(128, 64)
self.layer3 = nn.Linear(64, 32)
self.layer4 = nn.Linear(32, 10)
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = F.relu(self.layer3(x))
x = self.layer4(x)
return F.log_softmax(x, dim=1)
# class MNISTNetwork(nn.Module):
# def __init__(self):
# super().__init__()
# self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
# self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
# self.fc1 = nn.Linear(64*7*7, 1024)
# self.fc2 = nn.Linear(1024, 10)
# def forward(self, x):
# x = nn.functional.relu(self.conv1(x))
# x = nn.functional.max_pool2d(x, 2)
# x = nn.functional.relu(self.conv2(x))
# x = nn.functional.max_pool2d(x, 2)
# x = x.view(-1, 64*7*7)
# x = nn.functional.relu(self.fc1(x))
# x = nn.functional.dropout(x, training=self.training)
# x = self.fc2(x)
# return nn.functional.log_softmax(x, dim=1)