Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch.nn.functional as F | |
class MNISTNetwork(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.layer1 = nn.Linear(784, 128) | |
self.layer2 = nn.Linear(128, 64) | |
self.layer3 = nn.Linear(64, 32) | |
self.layer4 = nn.Linear(32, 10) | |
def forward(self, x): | |
x = F.relu(self.layer1(x)) | |
x = F.relu(self.layer2(x)) | |
x = F.relu(self.layer3(x)) | |
x = self.layer4(x) | |
return F.log_softmax(x, dim=1) | |
# class MNISTNetwork(nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2) | |
# self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2) | |
# self.fc1 = nn.Linear(64*7*7, 1024) | |
# self.fc2 = nn.Linear(1024, 10) | |
# def forward(self, x): | |
# x = nn.functional.relu(self.conv1(x)) | |
# x = nn.functional.max_pool2d(x, 2) | |
# x = nn.functional.relu(self.conv2(x)) | |
# x = nn.functional.max_pool2d(x, 2) | |
# x = x.view(-1, 64*7*7) | |
# x = nn.functional.relu(self.fc1(x)) | |
# x = nn.functional.dropout(x, training=self.training) | |
# x = self.fc2(x) | |
# return nn.functional.log_softmax(x, dim=1) | |