Spaces:
Runtime error
Runtime error
Commit
·
6c0d444
1
Parent(s):
284e3bc
first test run
Browse files- main.py +42 -0
- mnist_net.pth +3 -0
- neural_network.py +39 -0
main.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from neural_network import MNISTNetwork
|
5 |
+
|
6 |
+
|
7 |
+
transform = transforms.Compose([
|
8 |
+
transforms.ToTensor(), # Convert image to tensor
|
9 |
+
transforms.Normalize((0.1307,), (0.3081,)) # Normalize the image
|
10 |
+
])
|
11 |
+
|
12 |
+
# Load the trained model
|
13 |
+
net = MNISTNetwork()
|
14 |
+
net.load_state_dict(torch.load('mnist_net.pth'))
|
15 |
+
LABELS = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
16 |
+
|
17 |
+
def predict(drawing):
|
18 |
+
if drawing is None:
|
19 |
+
return "Draw something hoe"
|
20 |
+
|
21 |
+
input_tensor = transform(drawing)
|
22 |
+
x = input_tensor.view(input_tensor.shape[0], -1)
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
output = net(x)
|
26 |
+
|
27 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
28 |
+
values, indices = torch.topk(probabilities, 10)
|
29 |
+
results = {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
30 |
+
|
31 |
+
return results
|
32 |
+
|
33 |
+
|
34 |
+
sketchpad_input = gr.Sketchpad(shape=(28, 28))
|
35 |
+
interface = gr.Interface(
|
36 |
+
fn=predict,
|
37 |
+
inputs=sketchpad_input,
|
38 |
+
outputs="label",
|
39 |
+
live=True
|
40 |
+
)
|
41 |
+
interface.launch()
|
42 |
+
|
mnist_net.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37d782b2adae4525684264e311d73f3bb52e250b6bc13d0a9446e8fb45bc715a
|
3 |
+
size 446799
|
neural_network.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
class MNISTNetwork(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self):
|
7 |
+
super().__init__()
|
8 |
+
self.layer1 = nn.Linear(784, 128)
|
9 |
+
self.layer2 = nn.Linear(128, 64)
|
10 |
+
self.layer3 = nn.Linear(64, 32)
|
11 |
+
self.layer4 = nn.Linear(32, 10)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
x = F.relu(self.layer1(x))
|
15 |
+
x = F.relu(self.layer2(x))
|
16 |
+
x = F.relu(self.layer3(x))
|
17 |
+
x = self.layer4(x)
|
18 |
+
return F.log_softmax(x, dim=1)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# class MNISTNetwork(nn.Module):
|
23 |
+
# def __init__(self):
|
24 |
+
# super().__init__()
|
25 |
+
# self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
|
26 |
+
# self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
|
27 |
+
# self.fc1 = nn.Linear(64*7*7, 1024)
|
28 |
+
# self.fc2 = nn.Linear(1024, 10)
|
29 |
+
|
30 |
+
# def forward(self, x):
|
31 |
+
# x = nn.functional.relu(self.conv1(x))
|
32 |
+
# x = nn.functional.max_pool2d(x, 2)
|
33 |
+
# x = nn.functional.relu(self.conv2(x))
|
34 |
+
# x = nn.functional.max_pool2d(x, 2)
|
35 |
+
# x = x.view(-1, 64*7*7)
|
36 |
+
# x = nn.functional.relu(self.fc1(x))
|
37 |
+
# x = nn.functional.dropout(x, training=self.training)
|
38 |
+
# x = self.fc2(x)
|
39 |
+
# return nn.functional.log_softmax(x, dim=1)
|