shukdevdatta123 commited on
Commit
adbfe2e
·
verified ·
1 Parent(s): 9575065

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -23
app.py CHANGED
@@ -2,6 +2,7 @@ import spaces
2
  from kokoro import KModel, KPipeline
3
  import gradio as gr
4
  import os
 
5
  import torch
6
 
7
  IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
@@ -43,6 +44,33 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
43
  def predict(text, voice='af_heart', speed=1):
44
  return generate_first(text, voice, speed, use_gpu=False)[0]
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  random_texts = {}
47
  for lang in ['en']:
48
  with open(f'{lang}.txt', 'r') as r:
@@ -64,7 +92,7 @@ CHOICES = {
64
  '🇺🇸 🚺 Alloy': 'af_alloy',
65
  '🇺🇸 🚺 Jessica': 'af_jessica',
66
  '🇺🇸 🚺 River': 'af_river',
67
-
68
  '🇺🇸 🚹 Michael': 'am_michael',
69
  '🇺🇸 🚹 Fenrir': 'am_fenrir',
70
  '🇺🇸 🚹 Puck': 'am_puck',
@@ -74,46 +102,46 @@ CHOICES = {
74
  '🇺🇸 🚹 Onyx': 'am_onyx',
75
  '🇺🇸 🚹 Santa': 'am_santa',
76
  '🇺🇸 🚹 Adam': 'am_adam',
77
-
78
  '🇬🇧 🚺 Emma': 'bf_emma',
79
  '🇬🇧 🚺 Isabella': 'bf_isabella',
80
  '🇬🇧 🚺 Alice': 'bf_alice',
81
  '🇬🇧 🚺 Lily': 'bf_lily',
82
-
83
  '🇬🇧 🚹 George': 'bm_george',
84
  '🇬🇧 🚹 Fable': 'bm_fable',
85
  '🇬🇧 🚹 Lewis': 'bm_lewis',
86
  '🇬🇧 🚹 Daniel': 'bm_daniel',
87
-
88
  '🇪🇸 🚺 Dora': 'ef_dora',
89
-
90
  '🇪🇸 🚹 Alex': 'em_alex',
91
  '🇪🇸 🚹 Santa': 'em_santa',
92
-
93
  '🇫🇷 🚺 Siwis': 'ff_siwis',
94
-
95
  '🇮🇳 🚹 Alpha': 'hf_alpha',
96
  '🇮🇳 🚹 Beta': 'hf_beta',
97
-
98
  '🇮🇳 🚹 Omega': 'hm_omega',
99
  '🇮🇳 🚹 Psi': 'hm_psi',
100
-
101
  '🇮🇹 🚺 Sara': 'if_sara',
102
-
103
  '🇮🇹 🚺 Nicola': 'im_nicola',
104
-
105
  '🇯🇵 🚹 Alpha': 'jf_alpha',
106
  '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
107
  '🇯🇵 🚹 Nezumi': 'jf_nezumi',
108
  '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
109
-
110
  '🇯🇵 🚹 Kumo': 'jm_kumo',
111
-
112
  '🇧🇷 🚺 Dora': 'pf_dora',
113
-
114
  '🇧🇷 🚹 Alex': 'pm_alex',
115
  '🇧🇷 🚹 Santa': 'pm_santa',
116
-
117
  '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
118
  '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
119
  '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
@@ -127,28 +155,69 @@ CHOICES = {
127
  for v in CHOICES.values():
128
  pipelines[v[0]].load_voice(v)
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  BANNER_TEXT = '''
131
  [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
132
  As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
133
  This demo only showcases English, but you can directly use the model to access other languages.
134
  '''
135
-
 
136
  with gr.Blocks() as app:
137
  with gr.Row():
138
  gr.Markdown(BANNER_TEXT, container=True)
139
  with gr.Row():
140
  with gr.Column():
141
- text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate")
142
  with gr.Row():
143
  voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
 
 
 
 
 
 
 
144
  speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
145
  random_btn = gr.Button('Random Text', variant='secondary')
146
  with gr.Column():
147
- out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
148
- generate_btn = gr.Button('Generate', variant='primary')
149
-
150
- random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
151
- generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio], api_name=None)
 
 
152
 
153
  if __name__ == '__main__':
154
- app.queue().launch()
 
2
  from kokoro import KModel, KPipeline
3
  import gradio as gr
4
  import os
5
+ import random
6
  import torch
7
 
8
  IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
 
44
  def predict(text, voice='af_heart', speed=1):
45
  return generate_first(text, voice, speed, use_gpu=False)[0]
46
 
47
+ def tokenize_first(text, voice='af_heart'):
48
+ pipeline = pipelines[voice[0]]
49
+ for _, ps, _ in pipeline(text, voice):
50
+ return ps
51
+ return ''
52
+
53
+ def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
54
+ text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
55
+ pipeline = pipelines[voice[0]]
56
+ pack = pipeline.load_voice(voice)
57
+ use_gpu = use_gpu and CUDA_AVAILABLE
58
+ for _, ps, _ in pipeline(text, voice, speed):
59
+ ref_s = pack[len(ps)-1]
60
+ try:
61
+ if use_gpu:
62
+ audio = forward_gpu(ps, ref_s, speed)
63
+ else:
64
+ audio = models[False](ps, ref_s, speed)
65
+ except gr.exceptions.Error as e:
66
+ if use_gpu:
67
+ gr.Warning(str(e))
68
+ gr.Info('Switching to CPU')
69
+ audio = models[False](ps, ref_s, speed)
70
+ else:
71
+ raise gr.Error(e)
72
+ yield 24000, audio.numpy()
73
+
74
  random_texts = {}
75
  for lang in ['en']:
76
  with open(f'{lang}.txt', 'r') as r:
 
92
  '🇺🇸 🚺 Alloy': 'af_alloy',
93
  '🇺🇸 🚺 Jessica': 'af_jessica',
94
  '🇺🇸 🚺 River': 'af_river',
95
+
96
  '🇺🇸 🚹 Michael': 'am_michael',
97
  '🇺🇸 🚹 Fenrir': 'am_fenrir',
98
  '🇺🇸 🚹 Puck': 'am_puck',
 
102
  '🇺🇸 🚹 Onyx': 'am_onyx',
103
  '🇺🇸 🚹 Santa': 'am_santa',
104
  '🇺🇸 🚹 Adam': 'am_adam',
105
+
106
  '🇬🇧 🚺 Emma': 'bf_emma',
107
  '🇬🇧 🚺 Isabella': 'bf_isabella',
108
  '🇬🇧 🚺 Alice': 'bf_alice',
109
  '🇬🇧 🚺 Lily': 'bf_lily',
110
+
111
  '🇬🇧 🚹 George': 'bm_george',
112
  '🇬🇧 🚹 Fable': 'bm_fable',
113
  '🇬🇧 🚹 Lewis': 'bm_lewis',
114
  '🇬🇧 🚹 Daniel': 'bm_daniel',
115
+
116
  '🇪🇸 🚺 Dora': 'ef_dora',
117
+
118
  '🇪🇸 🚹 Alex': 'em_alex',
119
  '🇪🇸 🚹 Santa': 'em_santa',
120
+
121
  '🇫🇷 🚺 Siwis': 'ff_siwis',
122
+
123
  '🇮🇳 🚹 Alpha': 'hf_alpha',
124
  '🇮🇳 🚹 Beta': 'hf_beta',
125
+
126
  '🇮🇳 🚹 Omega': 'hm_omega',
127
  '🇮🇳 🚹 Psi': 'hm_psi',
128
+
129
  '🇮🇹 🚺 Sara': 'if_sara',
130
+
131
  '🇮🇹 🚺 Nicola': 'im_nicola',
132
+
133
  '🇯🇵 🚹 Alpha': 'jf_alpha',
134
  '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
135
  '🇯🇵 🚹 Nezumi': 'jf_nezumi',
136
  '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
137
+
138
  '🇯🇵 🚹 Kumo': 'jm_kumo',
139
+
140
  '🇧🇷 🚺 Dora': 'pf_dora',
141
+
142
  '🇧🇷 🚹 Alex': 'pm_alex',
143
  '🇧🇷 🚹 Santa': 'pm_santa',
144
+
145
  '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
146
  '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
147
  '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
 
155
  for v in CHOICES.values():
156
  pipelines[v[0]].load_voice(v)
157
 
158
+ TOKEN_NOTE = '''
159
+ 💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)`
160
+ 💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ`
161
+ ⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`
162
+ ⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
163
+ '''
164
+
165
+ with gr.Blocks() as generate_tab:
166
+ out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
167
+ generate_btn = gr.Button('Generate', variant='primary')
168
+ with gr.Accordion('Output Tokens', open=True):
169
+ out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
170
+ tokenize_btn = gr.Button('Tokenize', variant='secondary')
171
+ gr.Markdown(TOKEN_NOTE)
172
+ predict_btn = gr.Button('Predict', variant='secondary', visible=False)
173
+
174
+ STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
175
+ if CHAR_LIMIT is not None:
176
+ STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
177
+ STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
178
+ STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
179
+
180
+ with gr.Blocks() as stream_tab:
181
+ out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
182
+ with gr.Row():
183
+ stream_btn = gr.Button('Stream', variant='primary')
184
+ stop_btn = gr.Button('Stop', variant='stop')
185
+ with gr.Accordion('Note', open=True):
186
+ gr.Markdown(STREAM_NOTE)
187
+ gr.DuplicateButton()
188
+
189
  BANNER_TEXT = '''
190
  [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
191
  As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
192
  This demo only showcases English, but you can directly use the model to access other languages.
193
  '''
194
+ API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
195
+ API_NAME = None if API_OPEN else False
196
  with gr.Blocks() as app:
197
  with gr.Row():
198
  gr.Markdown(BANNER_TEXT, container=True)
199
  with gr.Row():
200
  with gr.Column():
201
+ text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
202
  with gr.Row():
203
  voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
204
+ use_gpu = gr.Dropdown(
205
+ [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
206
+ value=CUDA_AVAILABLE,
207
+ label='Hardware',
208
+ info='GPU is usually faster, but has a usage quota',
209
+ interactive=CUDA_AVAILABLE
210
+ )
211
  speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
212
  random_btn = gr.Button('Random Text', variant='secondary')
213
  with gr.Column():
214
+ gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
215
+ random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
216
+ generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
217
+ tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
218
+ stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
219
+ stop_btn.click(fn=None, cancels=stream_event)
220
+ predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
221
 
222
  if __name__ == '__main__':
223
+ app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)