Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import spaces
|
|
| 2 |
from kokoro import KModel, KPipeline
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
| 5 |
-
import random
|
| 6 |
import torch
|
| 7 |
|
| 8 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
|
@@ -44,33 +43,6 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
| 44 |
def predict(text, voice='af_heart', speed=1):
|
| 45 |
return generate_first(text, voice, speed, use_gpu=False)[0]
|
| 46 |
|
| 47 |
-
def tokenize_first(text, voice='af_heart'):
|
| 48 |
-
pipeline = pipelines[voice[0]]
|
| 49 |
-
for _, ps, _ in pipeline(text, voice):
|
| 50 |
-
return ps
|
| 51 |
-
return ''
|
| 52 |
-
|
| 53 |
-
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
| 54 |
-
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
| 55 |
-
pipeline = pipelines[voice[0]]
|
| 56 |
-
pack = pipeline.load_voice(voice)
|
| 57 |
-
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 58 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
| 59 |
-
ref_s = pack[len(ps)-1]
|
| 60 |
-
try:
|
| 61 |
-
if use_gpu:
|
| 62 |
-
audio = forward_gpu(ps, ref_s, speed)
|
| 63 |
-
else:
|
| 64 |
-
audio = models[False](ps, ref_s, speed)
|
| 65 |
-
except gr.exceptions.Error as e:
|
| 66 |
-
if use_gpu:
|
| 67 |
-
gr.Warning(str(e))
|
| 68 |
-
gr.Info('Switching to CPU')
|
| 69 |
-
audio = models[False](ps, ref_s, speed)
|
| 70 |
-
else:
|
| 71 |
-
raise gr.Error(e)
|
| 72 |
-
yield 24000, audio.numpy()
|
| 73 |
-
|
| 74 |
random_texts = {}
|
| 75 |
for lang in ['en']:
|
| 76 |
with open(f'{lang}.txt', 'r') as r:
|
|
@@ -92,7 +64,7 @@ CHOICES = {
|
|
| 92 |
'🇺🇸 🚺 Alloy': 'af_alloy',
|
| 93 |
'🇺🇸 🚺 Jessica': 'af_jessica',
|
| 94 |
'🇺🇸 🚺 River': 'af_river',
|
| 95 |
-
|
| 96 |
'🇺🇸 🚹 Michael': 'am_michael',
|
| 97 |
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
| 98 |
'🇺🇸 🚹 Puck': 'am_puck',
|
|
@@ -102,46 +74,46 @@ CHOICES = {
|
|
| 102 |
'🇺🇸 🚹 Onyx': 'am_onyx',
|
| 103 |
'🇺🇸 🚹 Santa': 'am_santa',
|
| 104 |
'🇺🇸 🚹 Adam': 'am_adam',
|
| 105 |
-
|
| 106 |
'🇬🇧 🚺 Emma': 'bf_emma',
|
| 107 |
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
| 108 |
'🇬🇧 🚺 Alice': 'bf_alice',
|
| 109 |
'🇬🇧 🚺 Lily': 'bf_lily',
|
| 110 |
-
|
| 111 |
'🇬🇧 🚹 George': 'bm_george',
|
| 112 |
'🇬🇧 🚹 Fable': 'bm_fable',
|
| 113 |
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
| 114 |
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
| 115 |
-
|
| 116 |
'🇪🇸 🚺 Dora': 'ef_dora',
|
| 117 |
-
|
| 118 |
'🇪🇸 🚹 Alex': 'em_alex',
|
| 119 |
'🇪🇸 🚹 Santa': 'em_santa',
|
| 120 |
-
|
| 121 |
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
| 122 |
-
|
| 123 |
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
| 124 |
'🇮🇳 🚹 Beta': 'hf_beta',
|
| 125 |
-
|
| 126 |
'🇮🇳 🚹 Omega': 'hm_omega',
|
| 127 |
'🇮🇳 🚹 Psi': 'hm_psi',
|
| 128 |
-
|
| 129 |
'🇮🇹 🚺 Sara': 'if_sara',
|
| 130 |
-
|
| 131 |
'🇮🇹 🚺 Nicola': 'im_nicola',
|
| 132 |
-
|
| 133 |
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
| 134 |
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
| 135 |
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
| 136 |
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
| 137 |
-
|
| 138 |
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
| 139 |
-
|
| 140 |
'🇧🇷 🚺 Dora': 'pf_dora',
|
| 141 |
-
|
| 142 |
'🇧🇷 🚹 Alex': 'pm_alex',
|
| 143 |
'🇧🇷 🚹 Santa': 'pm_santa',
|
| 144 |
-
|
| 145 |
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
| 146 |
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
| 147 |
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
|
@@ -155,69 +127,28 @@ CHOICES = {
|
|
| 155 |
for v in CHOICES.values():
|
| 156 |
pipelines[v[0]].load_voice(v)
|
| 157 |
|
| 158 |
-
TOKEN_NOTE = '''
|
| 159 |
-
💡 Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kˈOkəɹO/)
|
| 160 |
-
💬 To adjust intonation, try punctuation ;:,.!?—…"()“” or stress ˈ and ˌ
|
| 161 |
-
⬇️ Lower stress [1 level](-1) or [2 levels](-2)
|
| 162 |
-
⬆️ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
|
| 163 |
-
'''
|
| 164 |
-
|
| 165 |
-
with gr.Blocks() as generate_tab:
|
| 166 |
-
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
| 167 |
-
generate_btn = gr.Button('Generate', variant='primary')
|
| 168 |
-
with gr.Accordion('Output Tokens', open=True):
|
| 169 |
-
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
| 170 |
-
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
| 171 |
-
gr.Markdown(TOKEN_NOTE)
|
| 172 |
-
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
| 173 |
-
|
| 174 |
-
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click Stream.']
|
| 175 |
-
if CHAR_LIMIT is not None:
|
| 176 |
-
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
|
| 177 |
-
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
| 178 |
-
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
| 179 |
-
|
| 180 |
-
with gr.Blocks() as stream_tab:
|
| 181 |
-
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
| 182 |
-
with gr.Row():
|
| 183 |
-
stream_btn = gr.Button('Stream', variant='primary')
|
| 184 |
-
stop_btn = gr.Button('Stop', variant='stop')
|
| 185 |
-
with gr.Accordion('Note', open=True):
|
| 186 |
-
gr.Markdown(STREAM_NOTE)
|
| 187 |
-
gr.DuplicateButton()
|
| 188 |
-
|
| 189 |
BANNER_TEXT = '''
|
| 190 |
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
| 191 |
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
| 192 |
This demo only showcases English, but you can directly use the model to access other languages.
|
| 193 |
'''
|
| 194 |
-
|
| 195 |
-
API_NAME = None if API_OPEN else False
|
| 196 |
with gr.Blocks() as app:
|
| 197 |
with gr.Row():
|
| 198 |
gr.Markdown(BANNER_TEXT, container=True)
|
| 199 |
with gr.Row():
|
| 200 |
with gr.Column():
|
| 201 |
-
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate
|
| 202 |
with gr.Row():
|
| 203 |
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
| 204 |
-
use_gpu = gr.Dropdown(
|
| 205 |
-
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
| 206 |
-
value=CUDA_AVAILABLE,
|
| 207 |
-
label='Hardware',
|
| 208 |
-
info='GPU is usually faster, but has a usage quota',
|
| 209 |
-
interactive=CUDA_AVAILABLE
|
| 210 |
-
)
|
| 211 |
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
| 212 |
random_btn = gr.Button('Random Text', variant='secondary')
|
| 213 |
with gr.Column():
|
| 214 |
-
gr.
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
stop_btn.click(fn=None, cancels=stream_event)
|
| 220 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
| 221 |
|
| 222 |
if __name__ == '__main__':
|
| 223 |
-
app.queue(
|
|
|
|
| 2 |
from kokoro import KModel, KPipeline
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
|
|
|
| 5 |
import torch
|
| 6 |
|
| 7 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
|
|
|
| 43 |
def predict(text, voice='af_heart', speed=1):
|
| 44 |
return generate_first(text, voice, speed, use_gpu=False)[0]
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
random_texts = {}
|
| 47 |
for lang in ['en']:
|
| 48 |
with open(f'{lang}.txt', 'r') as r:
|
|
|
|
| 64 |
'🇺🇸 🚺 Alloy': 'af_alloy',
|
| 65 |
'🇺🇸 🚺 Jessica': 'af_jessica',
|
| 66 |
'🇺🇸 🚺 River': 'af_river',
|
| 67 |
+
|
| 68 |
'🇺🇸 🚹 Michael': 'am_michael',
|
| 69 |
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
| 70 |
'🇺🇸 🚹 Puck': 'am_puck',
|
|
|
|
| 74 |
'🇺🇸 🚹 Onyx': 'am_onyx',
|
| 75 |
'🇺🇸 🚹 Santa': 'am_santa',
|
| 76 |
'🇺🇸 🚹 Adam': 'am_adam',
|
| 77 |
+
|
| 78 |
'🇬🇧 🚺 Emma': 'bf_emma',
|
| 79 |
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
| 80 |
'🇬🇧 🚺 Alice': 'bf_alice',
|
| 81 |
'🇬🇧 🚺 Lily': 'bf_lily',
|
| 82 |
+
|
| 83 |
'🇬🇧 🚹 George': 'bm_george',
|
| 84 |
'🇬🇧 🚹 Fable': 'bm_fable',
|
| 85 |
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
| 86 |
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
| 87 |
+
|
| 88 |
'🇪🇸 🚺 Dora': 'ef_dora',
|
| 89 |
+
|
| 90 |
'🇪🇸 🚹 Alex': 'em_alex',
|
| 91 |
'🇪🇸 🚹 Santa': 'em_santa',
|
| 92 |
+
|
| 93 |
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
| 94 |
+
|
| 95 |
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
| 96 |
'🇮🇳 🚹 Beta': 'hf_beta',
|
| 97 |
+
|
| 98 |
'🇮🇳 🚹 Omega': 'hm_omega',
|
| 99 |
'🇮🇳 🚹 Psi': 'hm_psi',
|
| 100 |
+
|
| 101 |
'🇮🇹 🚺 Sara': 'if_sara',
|
| 102 |
+
|
| 103 |
'🇮🇹 🚺 Nicola': 'im_nicola',
|
| 104 |
+
|
| 105 |
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
| 106 |
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
| 107 |
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
| 108 |
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
| 109 |
+
|
| 110 |
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
| 111 |
+
|
| 112 |
'🇧🇷 🚺 Dora': 'pf_dora',
|
| 113 |
+
|
| 114 |
'🇧🇷 🚹 Alex': 'pm_alex',
|
| 115 |
'🇧🇷 🚹 Santa': 'pm_santa',
|
| 116 |
+
|
| 117 |
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
| 118 |
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
| 119 |
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
|
|
|
| 127 |
for v in CHOICES.values():
|
| 128 |
pipelines[v[0]].load_voice(v)
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
BANNER_TEXT = '''
|
| 131 |
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
| 132 |
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
| 133 |
This demo only showcases English, but you can directly use the model to access other languages.
|
| 134 |
'''
|
| 135 |
+
|
|
|
|
| 136 |
with gr.Blocks() as app:
|
| 137 |
with gr.Row():
|
| 138 |
gr.Markdown(BANNER_TEXT, container=True)
|
| 139 |
with gr.Row():
|
| 140 |
with gr.Column():
|
| 141 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate")
|
| 142 |
with gr.Row():
|
| 143 |
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
| 145 |
random_btn = gr.Button('Random Text', variant='secondary')
|
| 146 |
with gr.Column():
|
| 147 |
+
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
| 148 |
+
generate_btn = gr.Button('Generate', variant='primary')
|
| 149 |
+
|
| 150 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
|
| 151 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio], api_name=None)
|
|
|
|
|
|
|
| 152 |
|
| 153 |
if __name__ == '__main__':
|
| 154 |
+
app.queue().launch()
|