keets2 / app.py
shukdevdatta123's picture
Update app.py
9afcf62 verified
raw
history blame
5.12 kB
import gradio as gr
import openai
from kokoro import KPipeline
import random
import os
import torch
import time
# Set up the OpenAI API key (optional)
openai.api_key = None # Will be set by the user through the UI
# Check if GPU is available
CUDA_AVAILABLE = torch.cuda.is_available()
# Initialize the models and pipelines (for TTS)
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
# Load lexicon for specific languages
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
# Initialize random texts for generating sample text
random_texts = {}
for lang in ['en']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
lang = dict(a='en', b='en')[voice[0]]
return random.choice(random_texts[lang])
# Generate function to create speech from text
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Translator function using OpenAI API
def translate_to_english(api_key, text, lang_code):
openai.api_key = api_key
try:
prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
{"role": "user", "content": prompt}]
)
translated_text = response['choices'][0]['message']['content'].strip()
return translated_text
except Exception as e:
return f"Error: {str(e)}"
def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
pipeline = pipelines[lang_code]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy())
# Gradio interface setup
with gr.Blocks() as app:
gr.Markdown("### Kokoro Text-to-Speech with Translation")
with gr.Row():
with gr.Column():
# Input for text and language settings
input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...")
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice')
use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password")
random_btn = gr.Button("Random Text")
with gr.Column():
out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True)
out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False)
generate_btn = gr.Button("Generate Audio")
translate_btn = gr.Button("Translate and Generate Audio")
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text])
def handle_translation(text, api_key, lang_code, voice, speed, use_gpu):
translated_text = translate_to_english(api_key, text, lang_code)
translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
return translated_audio, translated_text
translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
def generate_and_play(text, voice, speed, use_gpu):
audio, tokens = generate_first(text, voice, speed, use_gpu)
return audio, tokens
generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
app.launch()