shukdevdatta123 commited on
Commit
9afcf62
·
verified ·
1 Parent(s): 1fa8e2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -141
app.py CHANGED
@@ -1,25 +1,36 @@
1
- import spaces
2
- from kokoro import KModel, KPipeline
3
  import gradio as gr
4
- import os
 
5
  import random
 
6
  import torch
 
7
 
8
- IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
9
- CHAR_LIMIT = None if IS_DUPLICATE else 5000
10
 
 
11
  CUDA_AVAILABLE = torch.cuda.is_available()
 
 
12
  models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
13
  pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
 
14
  pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
15
  pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
16
 
17
- @spaces.GPU(duration=10)
18
- def forward_gpu(ps, ref_s, speed):
19
- return models[True](ps, ref_s, speed)
 
 
20
 
 
 
 
 
 
21
  def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
22
- text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
23
  pipeline = pipelines[voice[0]]
24
  pack = pipeline.load_voice(voice)
25
  use_gpu = use_gpu and CUDA_AVAILABLE
@@ -40,18 +51,23 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
40
  return (24000, audio.numpy()), ps
41
  return None, ''
42
 
43
- # Arena API
44
- def predict(text, voice='af_heart', speed=1):
45
- return generate_first(text, voice, speed, use_gpu=False)[0]
46
-
47
- def tokenize_first(text, voice='af_heart'):
48
- # Split the input text into words and return as a list of words (fix applied here)
49
- words = text.split() # This splits the text into words based on spaces
50
- return words # Return a list of words
 
 
 
 
 
 
51
 
52
- def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
53
- text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
54
- pipeline = pipelines[voice[0]]
55
  pack = pipeline.load_voice(voice)
56
  use_gpu = use_gpu and CUDA_AVAILABLE
57
  for _, ps, _ in pipeline(text, voice, speed):
@@ -68,131 +84,40 @@ def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
68
  audio = models[False](ps, ref_s, speed)
69
  else:
70
  raise gr.Error(e)
71
- yield 24000, audio.numpy()
72
-
73
- random_texts = {}
74
- for lang in ['en']:
75
- with open(f'{lang}.txt', 'r') as r:
76
- random_texts[lang] = [line.strip() for line in r]
77
 
78
- def get_random_text(voice):
79
- lang = dict(a='en', b='en')[voice[0]]
80
- return random.choice(random_texts[lang])
 
 
 
 
 
 
 
 
 
81
 
82
- CHOICES = {
83
- '🇺🇸 🚺 Heart ❤️': 'af_heart',
84
- '🇺🇸 🚺 Bella 🔥': 'af_bella',
85
- '🇺🇸 🚺 Nicole 🎧': 'af_nicole',
86
- '🇺🇸 🚺 Aoede': 'af_aoede',
87
- '🇺🇸 🚺 Kore': 'af_kore',
88
- '🇺🇸 🚺 Sarah': 'af_sarah',
89
- '🇺🇸 🚺 Nova': 'af_nova',
90
- '🇺🇸 🚺 Sky': 'af_sky',
91
- '🇺🇸 🚺 Alloy': 'af_alloy',
92
- '🇺🇸 🚺 Jessica': 'af_jessica',
93
- '🇺🇸 🚺 River': 'af_river',
94
-
95
- '🇺🇸 🚹 Michael': 'am_michael',
96
- '🇺🇸 🚹 Fenrir': 'am_fenrir',
97
- '🇺🇸 🚹 Puck': 'am_puck',
98
- '🇺🇸 🚹 Echo': 'am_echo',
99
- '🇺🇸 🚹 Eric': 'am_eric',
100
- '🇺🇸 🚹 Liam': 'am_liam',
101
- '🇺🇸 🚹 Onyx': 'am_onyx',
102
- '🇺🇸 🚹 Santa': 'am_santa',
103
- '🇺🇸 🚹 Adam': 'am_adam',
104
-
105
- '🇬🇧 🚺 Emma': 'bf_emma',
106
- '🇬🇧 🚺 Isabella': 'bf_isabella',
107
- '🇬🇧 🚺 Alice': 'bf_alice',
108
- '🇬🇧 🚺 Lily': 'bf_lily',
109
-
110
- '🇬🇧 🚹 George': 'bm_george',
111
- '🇬🇧 🚹 Fable': 'bm_fable',
112
- '🇬🇧 🚹 Lewis': 'bm_lewis',
113
- '🇬🇧 🚹 Daniel': 'bm_daniel',
114
-
115
- '🇪🇸 🚺 Dora': 'ef_dora',
116
-
117
- '🇪🇸 🚹 Alex': 'em_alex',
118
- '🇪🇸 🚹 Santa': 'em_santa',
119
-
120
- '🇫🇷 🚺 Siwis': 'ff_siwis',
121
-
122
- '🇮🇳 🚹 Alpha': 'hf_alpha',
123
- '🇮🇳 🚹 Beta': 'hf_beta',
124
-
125
- '🇮🇳 🚹 Omega': 'hm_omega',
126
- '🇮🇳 🚹 Psi': 'hm_psi',
127
-
128
- '🇮🇹 🚺 Sara': 'if_sara',
129
-
130
- '🇮🇹 🚺 Nicola': 'im_nicola',
131
-
132
- '🇯🇵 🚹 Alpha': 'jf_alpha',
133
- '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
134
- '🇯🇵 🚹 Nezumi': 'jf_nezumi',
135
- '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
136
-
137
- '🇯🇵 🚹 Kumo': 'jm_kumo',
138
-
139
- '🇧🇷 🚺 Dora': 'pf_dora',
140
-
141
- '🇧🇷 🚹 Alex': 'pm_alex',
142
- '🇧🇷 🚹 Santa': 'pm_santa',
143
-
144
- '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
145
- '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
146
- '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
147
- '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
148
 
149
- '🇨🇳 🚹 Yunjian': 'zm_yunjian',
150
- '🇨🇳 🚹 Yunxi': 'zm_yunxi',
151
- '🇨🇳 🚹 Yunxia': 'zm_yunxia',
152
- '🇨🇳 🚹 Yunyang': 'zm_yunyang',
153
- }
154
- for v in CHOICES.values():
155
- pipelines[v[0]].load_voice(v)
156
 
157
- with gr.Blocks() as generate_tab:
158
- out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
159
- generate_btn = gr.Button('Generate', variant='primary')
160
- with gr.Accordion('Output Tokens', open=True):
161
- out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
162
- tokenize_btn = gr.Button('Tokenize', variant='secondary')
163
- predict_btn = gr.Button('Predict', variant='secondary', visible=False)
164
 
165
- BANNER_TEXT = '''
166
- [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
167
- As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
168
- This demo only showcases English, but you can directly use the model to access other languages.
169
- '''
170
 
171
- API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
172
- API_NAME = None if API_OPEN else False
173
- with gr.Blocks() as app:
174
- with gr.Row():
175
- gr.Markdown(BANNER_TEXT, container=True)
176
- with gr.Row():
177
- with gr.Column():
178
- text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
179
- with gr.Row():
180
- voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
181
- use_gpu = gr.Dropdown(
182
- [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
183
- value=CUDA_AVAILABLE,
184
- label='Hardware',
185
- info='GPU is usually faster, but has a usage quota',
186
- interactive=CUDA_AVAILABLE
187
- )
188
- speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
189
- random_btn = gr.Button('Random Text', variant='secondary')
190
- with gr.Column():
191
- gr.TabbedInterface([generate_tab], ['Generate'])
192
- random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
193
- generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
194
- tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
195
- predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
196
 
197
- if __name__ == '__main__':
198
- app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
 
 
 
1
  import gradio as gr
2
+ import openai
3
+ from kokoro import KPipeline
4
  import random
5
+ import os
6
  import torch
7
+ import time
8
 
9
+ # Set up the OpenAI API key (optional)
10
+ openai.api_key = None # Will be set by the user through the UI
11
 
12
+ # Check if GPU is available
13
  CUDA_AVAILABLE = torch.cuda.is_available()
14
+
15
+ # Initialize the models and pipelines (for TTS)
16
  models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
17
  pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
18
+ # Load lexicon for specific languages
19
  pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
20
  pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
21
 
22
+ # Initialize random texts for generating sample text
23
+ random_texts = {}
24
+ for lang in ['en']:
25
+ with open(f'{lang}.txt', 'r') as r:
26
+ random_texts[lang] = [line.strip() for line in r]
27
 
28
+ def get_random_text(voice):
29
+ lang = dict(a='en', b='en')[voice[0]]
30
+ return random.choice(random_texts[lang])
31
+
32
+ # Generate function to create speech from text
33
  def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
 
34
  pipeline = pipelines[voice[0]]
35
  pack = pipeline.load_voice(voice)
36
  use_gpu = use_gpu and CUDA_AVAILABLE
 
51
  return (24000, audio.numpy()), ps
52
  return None, ''
53
 
54
+ # Translator function using OpenAI API
55
+ def translate_to_english(api_key, text, lang_code):
56
+ openai.api_key = api_key
57
+ try:
58
+ prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
59
+ response = openai.ChatCompletion.create(
60
+ model="gpt-4",
61
+ messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
62
+ {"role": "user", "content": prompt}]
63
+ )
64
+ translated_text = response['choices'][0]['message']['content'].strip()
65
+ return translated_text
66
+ except Exception as e:
67
+ return f"Error: {str(e)}"
68
 
69
+ def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
70
+ pipeline = pipelines[lang_code]
 
71
  pack = pipeline.load_voice(voice)
72
  use_gpu = use_gpu and CUDA_AVAILABLE
73
  for _, ps, _ in pipeline(text, voice, speed):
 
84
  audio = models[False](ps, ref_s, speed)
85
  else:
86
  raise gr.Error(e)
87
+ return (24000, audio.numpy())
 
 
 
 
 
88
 
89
+ # Gradio interface setup
90
+ with gr.Blocks() as app:
91
+ gr.Markdown("### Kokoro Text-to-Speech with Translation")
92
+ with gr.Row():
93
+ with gr.Column():
94
+ # Input for text and language settings
95
+ input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...")
96
+ voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice')
97
+ use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE)
98
+ speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
99
+ openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password")
100
+ random_btn = gr.Button("Random Text")
101
 
102
+ with gr.Column():
103
+ out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True)
104
+ out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False)
105
+ generate_btn = gr.Button("Generate Audio")
106
+ translate_btn = gr.Button("Translate and Generate Audio")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
+ random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text])
109
+
110
+ def handle_translation(text, api_key, lang_code, voice, speed, use_gpu):
111
+ translated_text = translate_to_english(api_key, text, lang_code)
112
+ translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
113
+ return translated_audio, translated_text
 
114
 
115
+ translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
 
 
 
 
 
 
116
 
117
+ def generate_and_play(text, voice, speed, use_gpu):
118
+ audio, tokens = generate_first(text, voice, speed, use_gpu)
119
+ return audio, tokens
 
 
120
 
121
+ generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ app.launch()