Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,36 @@
|
|
1 |
-
import spaces
|
2 |
-
from kokoro import KModel, KPipeline
|
3 |
import gradio as gr
|
4 |
-
import
|
|
|
5 |
import random
|
|
|
6 |
import torch
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
|
|
|
11 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
|
|
12 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
13 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
|
|
|
14 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
15 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
-
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
23 |
pipeline = pipelines[voice[0]]
|
24 |
pack = pipeline.load_voice(voice)
|
25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -40,18 +51,23 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
40 |
return (24000, audio.numpy()), ps
|
41 |
return None, ''
|
42 |
|
43 |
-
#
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def
|
53 |
-
|
54 |
-
pipeline = pipelines[voice[0]]
|
55 |
pack = pipeline.load_voice(voice)
|
56 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
57 |
for _, ps, _ in pipeline(text, voice, speed):
|
@@ -68,131 +84,40 @@ def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
68 |
audio = models[False](ps, ref_s, speed)
|
69 |
else:
|
70 |
raise gr.Error(e)
|
71 |
-
|
72 |
-
|
73 |
-
random_texts = {}
|
74 |
-
for lang in ['en']:
|
75 |
-
with open(f'{lang}.txt', 'r') as r:
|
76 |
-
random_texts[lang] = [line.strip() for line in r]
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
'🇺🇸 🚺 Kore': 'af_kore',
|
88 |
-
'🇺🇸 🚺 Sarah': 'af_sarah',
|
89 |
-
'🇺🇸 🚺 Nova': 'af_nova',
|
90 |
-
'🇺🇸 🚺 Sky': 'af_sky',
|
91 |
-
'🇺🇸 🚺 Alloy': 'af_alloy',
|
92 |
-
'🇺🇸 🚺 Jessica': 'af_jessica',
|
93 |
-
'🇺🇸 🚺 River': 'af_river',
|
94 |
-
|
95 |
-
'🇺🇸 🚹 Michael': 'am_michael',
|
96 |
-
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
97 |
-
'🇺🇸 🚹 Puck': 'am_puck',
|
98 |
-
'🇺🇸 🚹 Echo': 'am_echo',
|
99 |
-
'🇺🇸 🚹 Eric': 'am_eric',
|
100 |
-
'🇺🇸 🚹 Liam': 'am_liam',
|
101 |
-
'🇺🇸 🚹 Onyx': 'am_onyx',
|
102 |
-
'🇺🇸 🚹 Santa': 'am_santa',
|
103 |
-
'🇺🇸 🚹 Adam': 'am_adam',
|
104 |
-
|
105 |
-
'🇬🇧 🚺 Emma': 'bf_emma',
|
106 |
-
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
107 |
-
'🇬🇧 🚺 Alice': 'bf_alice',
|
108 |
-
'🇬🇧 🚺 Lily': 'bf_lily',
|
109 |
-
|
110 |
-
'🇬🇧 🚹 George': 'bm_george',
|
111 |
-
'🇬🇧 🚹 Fable': 'bm_fable',
|
112 |
-
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
113 |
-
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
114 |
-
|
115 |
-
'🇪🇸 🚺 Dora': 'ef_dora',
|
116 |
-
|
117 |
-
'🇪🇸 🚹 Alex': 'em_alex',
|
118 |
-
'🇪🇸 🚹 Santa': 'em_santa',
|
119 |
-
|
120 |
-
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
121 |
-
|
122 |
-
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
123 |
-
'🇮🇳 🚹 Beta': 'hf_beta',
|
124 |
-
|
125 |
-
'🇮🇳 🚹 Omega': 'hm_omega',
|
126 |
-
'🇮🇳 🚹 Psi': 'hm_psi',
|
127 |
-
|
128 |
-
'🇮🇹 🚺 Sara': 'if_sara',
|
129 |
-
|
130 |
-
'🇮🇹 🚺 Nicola': 'im_nicola',
|
131 |
-
|
132 |
-
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
133 |
-
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
134 |
-
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
135 |
-
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
136 |
-
|
137 |
-
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
138 |
-
|
139 |
-
'🇧🇷 🚺 Dora': 'pf_dora',
|
140 |
-
|
141 |
-
'🇧🇷 🚹 Alex': 'pm_alex',
|
142 |
-
'🇧🇷 🚹 Santa': 'pm_santa',
|
143 |
-
|
144 |
-
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
145 |
-
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
146 |
-
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
147 |
-
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
pipelines[v[0]].load_voice(v)
|
156 |
|
157 |
-
|
158 |
-
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
159 |
-
generate_btn = gr.Button('Generate', variant='primary')
|
160 |
-
with gr.Accordion('Output Tokens', open=True):
|
161 |
-
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
162 |
-
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
163 |
-
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
This demo only showcases English, but you can directly use the model to access other languages.
|
169 |
-
'''
|
170 |
|
171 |
-
|
172 |
-
API_NAME = None if API_OPEN else False
|
173 |
-
with gr.Blocks() as app:
|
174 |
-
with gr.Row():
|
175 |
-
gr.Markdown(BANNER_TEXT, container=True)
|
176 |
-
with gr.Row():
|
177 |
-
with gr.Column():
|
178 |
-
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
179 |
-
with gr.Row():
|
180 |
-
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
181 |
-
use_gpu = gr.Dropdown(
|
182 |
-
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
183 |
-
value=CUDA_AVAILABLE,
|
184 |
-
label='Hardware',
|
185 |
-
info='GPU is usually faster, but has a usage quota',
|
186 |
-
interactive=CUDA_AVAILABLE
|
187 |
-
)
|
188 |
-
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
189 |
-
random_btn = gr.Button('Random Text', variant='secondary')
|
190 |
-
with gr.Column():
|
191 |
-
gr.TabbedInterface([generate_tab], ['Generate'])
|
192 |
-
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
193 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
194 |
-
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
195 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
196 |
|
197 |
-
|
198 |
-
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import openai
|
3 |
+
from kokoro import KPipeline
|
4 |
import random
|
5 |
+
import os
|
6 |
import torch
|
7 |
+
import time
|
8 |
|
9 |
+
# Set up the OpenAI API key (optional)
|
10 |
+
openai.api_key = None # Will be set by the user through the UI
|
11 |
|
12 |
+
# Check if GPU is available
|
13 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
14 |
+
|
15 |
+
# Initialize the models and pipelines (for TTS)
|
16 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
17 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
|
18 |
+
# Load lexicon for specific languages
|
19 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
20 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
21 |
|
22 |
+
# Initialize random texts for generating sample text
|
23 |
+
random_texts = {}
|
24 |
+
for lang in ['en']:
|
25 |
+
with open(f'{lang}.txt', 'r') as r:
|
26 |
+
random_texts[lang] = [line.strip() for line in r]
|
27 |
|
28 |
+
def get_random_text(voice):
|
29 |
+
lang = dict(a='en', b='en')[voice[0]]
|
30 |
+
return random.choice(random_texts[lang])
|
31 |
+
|
32 |
+
# Generate function to create speech from text
|
33 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
|
34 |
pipeline = pipelines[voice[0]]
|
35 |
pack = pipeline.load_voice(voice)
|
36 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
51 |
return (24000, audio.numpy()), ps
|
52 |
return None, ''
|
53 |
|
54 |
+
# Translator function using OpenAI API
|
55 |
+
def translate_to_english(api_key, text, lang_code):
|
56 |
+
openai.api_key = api_key
|
57 |
+
try:
|
58 |
+
prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
|
59 |
+
response = openai.ChatCompletion.create(
|
60 |
+
model="gpt-4",
|
61 |
+
messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
|
62 |
+
{"role": "user", "content": prompt}]
|
63 |
+
)
|
64 |
+
translated_text = response['choices'][0]['message']['content'].strip()
|
65 |
+
return translated_text
|
66 |
+
except Exception as e:
|
67 |
+
return f"Error: {str(e)}"
|
68 |
|
69 |
+
def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
|
70 |
+
pipeline = pipelines[lang_code]
|
|
|
71 |
pack = pipeline.load_voice(voice)
|
72 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
73 |
for _, ps, _ in pipeline(text, voice, speed):
|
|
|
84 |
audio = models[False](ps, ref_s, speed)
|
85 |
else:
|
86 |
raise gr.Error(e)
|
87 |
+
return (24000, audio.numpy())
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Gradio interface setup
|
90 |
+
with gr.Blocks() as app:
|
91 |
+
gr.Markdown("### Kokoro Text-to-Speech with Translation")
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
# Input for text and language settings
|
95 |
+
input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...")
|
96 |
+
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice')
|
97 |
+
use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE)
|
98 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
|
99 |
+
openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password")
|
100 |
+
random_btn = gr.Button("Random Text")
|
101 |
|
102 |
+
with gr.Column():
|
103 |
+
out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True)
|
104 |
+
out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False)
|
105 |
+
generate_btn = gr.Button("Generate Audio")
|
106 |
+
translate_btn = gr.Button("Translate and Generate Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text])
|
109 |
+
|
110 |
+
def handle_translation(text, api_key, lang_code, voice, speed, use_gpu):
|
111 |
+
translated_text = translate_to_english(api_key, text, lang_code)
|
112 |
+
translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
|
113 |
+
return translated_audio, translated_text
|
|
|
114 |
|
115 |
+
translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
def generate_and_play(text, voice, speed, use_gpu):
|
118 |
+
audio, tokens = generate_first(text, voice, speed, use_gpu)
|
119 |
+
return audio, tokens
|
|
|
|
|
120 |
|
121 |
+
generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
app.launch()
|
|