File size: 8,668 Bytes
d98f3c7 e9b69d2 9cc0dc7 d98f3c7 e9b69d2 8d0ba45 41b5e7a d98f3c7 e9b69d2 d989475 41b5e7a d98f3c7 41b5e7a d989475 19f7938 d98f3c7 9afcf62 e8c4059 d98f3c7 41b5e7a d989475 41b5e7a d98f3c7 e9b69d2 8d0ba45 19f7938 da8e3d2 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 8d0ba45 19f7938 da8e3d2 8d0ba45 d98f3c7 19f7938 d98f3c7 8d0ba45 d98f3c7 b56a615 e2b003c 9afcf62 d98f3c7 19f7938 9afcf62 e2b003c d98f3c7 9afcf62 e2b003c 8d0ba45 e2b003c 19f7938 d98f3c7 e2b003c d98f3c7 19f7938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
import openai
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000
CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
# Check API status
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
API_NAME = None if API_OPEN else False
@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
return models[True](ps, ref_s, speed)
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
def tokenize_first(text, voice='af_heart'):
words = text.split() # This splits the text into words based on spaces
return words # Return a list of words
def get_random_text(voice):
lang = dict(a='en', b='en')[voice[0]]
return random.choice(random_texts[lang])
# OpenAI GPT-4 translation function
def translate_to_english(text, model="gpt-4"):
try:
response = openai.Completion.create(
model=model,
prompt=f"Translate the following text to English:\n\n{text}",
temperature=0.5,
max_tokens=500,
)
return response.choices[0].text.strip()
except Exception as e:
return str(e)
# Function to handle generation for translated text
def translate_and_generate(text, voice, speed):
translated_text = translate_to_english(text)
audio, tokens = generate_first(translated_text, voice, speed, use_gpu=CUDA_AVAILABLE)
return audio, tokens, translated_text
# Load random text for "Random Text" button
random_texts = {}
for lang in ['en']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
'🇪🇸 🚺 Dora': 'ef_dora',
'🇪🇸 🚹 Alex': 'em_alex',
'🇪🇸 🚹 Santa': 'em_santa',
'🇫🇷 🚺 Siwis': 'ff_siwis',
'🇮🇳 🚹 Alpha': 'hf_alpha',
'🇮🇳 🚹 Beta': 'hf_beta',
'🇮🇳 🚹 Omega': 'hm_omega',
'🇮🇳 🚹 Psi': 'hm_psi',
'🇮🇹 🚺 Sara': 'if_sara',
'🇮🇹 🚺 Nicola': 'im_nicola',
'🇯🇵 🚹 Alpha': 'jf_alpha',
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
'🇯🇵 🚹 Kumo': 'jm_kumo',
'🇧🇷 🚺 Dora': 'pf_dora',
'🇧🇷 🚹 Alex': 'pm_alex',
'🇧🇷 🚹 Santa': 'pm_santa',
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
# (All the voice options here... same as before)
}
for v in CHOICES.values():
pipelines[v[0]].load_voice(v)
# Tabs for generation and translation
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
tokenize_btn = gr.Button('Tokenize', variant='secondary')
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
with gr.Blocks() as translator_tab:
trans_out_audio = gr.Audio(label='Translated Audio Output', interactive=False, streaming=False, autoplay=True)
trans_out_tokens = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the translated audio')
translate_btn = gr.Button('Translate & Generate Audio', variant='primary')
BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
This demo only showcases English, but you can directly use the model to access other languages.
'''
# Main app with text input field that is accessible globally
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(BANNER_TEXT, container=True)
with gr.Row():
with gr.Column():
# Make 'text' globally accessible
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
use_gpu = gr.Dropdown(
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
value=CUDA_AVAILABLE,
label='Hardware',
info='GPU is usually faster, but has a usage quota',
interactive=CUDA_AVAILABLE
)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
random_btn = gr.Button('Random Text', variant='secondary')
with gr.Column():
# Tabs for generation and translation
gr.TabbedInterface([generate_tab, translator_tab], ['Generate', 'Translator'])
# Event handlers for the buttons
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
# Fix: Pass `text` as an input to `translate_and_generate`
translate_btn.click(fn=translate_and_generate, inputs=[text, voice, speed], outputs=[trans_out_audio, trans_out_tokens, text], api_name=API_NAME)
if __name__ == '__main__':
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|