File size: 8,668 Bytes
d98f3c7
 
e9b69d2
9cc0dc7
d98f3c7
e9b69d2
8d0ba45
41b5e7a
d98f3c7
 
e9b69d2
d989475
41b5e7a
d98f3c7
41b5e7a
 
d989475
19f7938
 
 
 
d98f3c7
 
 
9afcf62
e8c4059
d98f3c7
41b5e7a
 
 
 
 
d989475
41b5e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
d98f3c7
 
 
 
 
 
 
e9b69d2
8d0ba45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f7938
 
 
 
 
 
da8e3d2
8d0ba45
 
 
 
 
 
 
 
 
 
 
19f7938
8d0ba45
 
 
 
 
 
 
 
 
19f7938
8d0ba45
 
 
 
19f7938
8d0ba45
 
 
 
19f7938
8d0ba45
19f7938
8d0ba45
 
19f7938
8d0ba45
19f7938
8d0ba45
 
19f7938
8d0ba45
 
19f7938
8d0ba45
19f7938
8d0ba45
19f7938
8d0ba45
 
 
 
19f7938
8d0ba45
19f7938
8d0ba45
19f7938
8d0ba45
 
19f7938
8d0ba45
 
 
 
19f7938
8d0ba45
 
 
 
19f7938
da8e3d2
8d0ba45
d98f3c7
 
 
19f7938
d98f3c7
 
 
 
 
 
 
 
8d0ba45
 
 
 
d98f3c7
b56a615
 
 
 
 
 
e2b003c
9afcf62
d98f3c7
19f7938
9afcf62
 
e2b003c
d98f3c7
 
 
 
 
 
 
 
 
 
 
 
9afcf62
e2b003c
8d0ba45
 
e2b003c
19f7938
 
 
 
d98f3c7
e2b003c
 
 
d98f3c7
19f7938
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
import openai

IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000

CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'

# Check API status
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
API_NAME = None if API_OPEN else False

@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

def tokenize_first(text, voice='af_heart'):
    words = text.split()  # This splits the text into words based on spaces
    return words  # Return a list of words

def get_random_text(voice):
    lang = dict(a='en', b='en')[voice[0]]
    return random.choice(random_texts[lang])

# OpenAI GPT-4 translation function
def translate_to_english(text, model="gpt-4"):
    try:
        response = openai.Completion.create(
            model=model,
            prompt=f"Translate the following text to English:\n\n{text}",
            temperature=0.5,
            max_tokens=500,
        )
        return response.choices[0].text.strip()
    except Exception as e:
        return str(e)

# Function to handle generation for translated text
def translate_and_generate(text, voice, speed):
    translated_text = translate_to_english(text)
    audio, tokens = generate_first(translated_text, voice, speed, use_gpu=CUDA_AVAILABLE)
    return audio, tokens, translated_text

# Load random text for "Random Text" button
random_texts = {}
for lang in ['en']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

CHOICES = {
    '🇺🇸 🚺 Heart ❤️': 'af_heart',
    '🇺🇸 🚺 Bella 🔥': 'af_bella',
    '🇺🇸 🚺 Nicole 🎧': 'af_nicole',
    '🇺🇸 🚺 Aoede': 'af_aoede',
    '🇺🇸 🚺 Kore': 'af_kore',
    '🇺🇸 🚺 Sarah': 'af_sarah',
    '🇺🇸 🚺 Nova': 'af_nova',
    '🇺🇸 🚺 Sky': 'af_sky',
    '🇺🇸 🚺 Alloy': 'af_alloy',
    '🇺🇸 🚺 Jessica': 'af_jessica',
    '🇺🇸 🚺 River': 'af_river',
        
    '🇺🇸 🚹 Michael': 'am_michael',
    '🇺🇸 🚹 Fenrir': 'am_fenrir',
    '🇺🇸 🚹 Puck': 'am_puck',
    '🇺🇸 🚹 Echo': 'am_echo',
    '🇺🇸 🚹 Eric': 'am_eric',
    '🇺🇸 🚹 Liam': 'am_liam',
    '🇺🇸 🚹 Onyx': 'am_onyx',
    '🇺🇸 🚹 Santa': 'am_santa',
    '🇺🇸 🚹 Adam': 'am_adam',
        
    '🇬🇧 🚺 Emma': 'bf_emma',
    '🇬🇧 🚺 Isabella': 'bf_isabella',
    '🇬🇧 🚺 Alice': 'bf_alice',
    '🇬🇧 🚺 Lily': 'bf_lily',
        
    '🇬🇧 🚹 George': 'bm_george',
    '🇬🇧 🚹 Fable': 'bm_fable',
    '🇬🇧 🚹 Lewis': 'bm_lewis',
    '🇬🇧 🚹 Daniel': 'bm_daniel',
        
    '🇪🇸 🚺 Dora': 'ef_dora',
        
    '🇪🇸 🚹 Alex': 'em_alex',
    '🇪🇸 🚹 Santa': 'em_santa',
        
    '🇫🇷 🚺 Siwis': 'ff_siwis',
        
    '🇮🇳 🚹 Alpha': 'hf_alpha',
    '🇮🇳 🚹 Beta': 'hf_beta',
        
    '🇮🇳 🚹 Omega': 'hm_omega',
    '🇮🇳 🚹 Psi': 'hm_psi',
        
    '🇮🇹 🚺 Sara': 'if_sara',
        
    '🇮🇹 🚺 Nicola': 'im_nicola',
        
    '🇯🇵 🚹 Alpha': 'jf_alpha',
    '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
    '🇯🇵 🚹 Nezumi': 'jf_nezumi',
    '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
        
    '🇯🇵 🚹 Kumo': 'jm_kumo',
        
    '🇧🇷 🚺 Dora': 'pf_dora',
        
    '🇧🇷 🚹 Alex': 'pm_alex',
    '🇧🇷 🚹 Santa': 'pm_santa',
        
    '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
    '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
    '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
    '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
    
    '🇨🇳 🚹 Yunjian': 'zm_yunjian',
    '🇨🇳 🚹 Yunxi': 'zm_yunxi',
    '🇨🇳 🚹 Yunxia': 'zm_yunxia',
    '🇨🇳 🚹 Yunyang': 'zm_yunyang',
    # (All the voice options here... same as before)
}

for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

# Tabs for generation and translation
with gr.Blocks() as generate_tab:
    out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
    generate_btn = gr.Button('Generate', variant='primary')
    with gr.Accordion('Output Tokens', open=True):
        out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
        tokenize_btn = gr.Button('Tokenize', variant='secondary')
        predict_btn = gr.Button('Predict', variant='secondary', visible=False)

with gr.Blocks() as translator_tab:
    trans_out_audio = gr.Audio(label='Translated Audio Output', interactive=False, streaming=False, autoplay=True)
    trans_out_tokens = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the translated audio')
    translate_btn = gr.Button('Translate & Generate Audio', variant='primary')

BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
This demo only showcases English, but you can directly use the model to access other languages.
'''

# Main app with text input field that is accessible globally
with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown(BANNER_TEXT, container=True)
    with gr.Row():
        with gr.Column():
            # Make 'text' globally accessible
            text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is usually faster, but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('Random Text', variant='secondary')
        with gr.Column():
            # Tabs for generation and translation
            gr.TabbedInterface([generate_tab, translator_tab], ['Generate', 'Translator'])
    
    # Event handlers for the buttons
    random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
    generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
    tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
    predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)

    # Fix: Pass `text` as an input to `translate_and_generate`
    translate_btn.click(fn=translate_and_generate, inputs=[text, voice, speed], outputs=[trans_out_audio, trans_out_tokens, text], api_name=API_NAME)

if __name__ == '__main__':
    app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)