File size: 5,439 Bytes
41b5e7a
 
e9b69d2
 
 
41b5e7a
 
e8c4059
e9b69d2
d989475
41b5e7a
e2b24ee
41b5e7a
 
d989475
41b5e7a
 
 
 
e8c4059
 
41b5e7a
 
 
 
 
d989475
41b5e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb40ed
41b5e7a
e9b69d2
41b5e7a
e9b69d2
 
 
 
41b5e7a
e9b69d2
 
c1057fc
41b5e7a
 
 
 
 
 
 
 
c1057fc
 
 
9575065
41b5e7a
 
 
c1057fc
 
 
 
41b5e7a
 
9575065
41b5e7a
 
c1057fc
 
9575065
c1057fc
41b5e7a
c1057fc
41b5e7a
9575065
d631439
9575065
d631439
 
9575065
d631439
9575065
d631439
 
9575065
d631439
 
9575065
d631439
9575065
d631439
9575065
d631439
 
 
 
9575065
d631439
9575065
d631439
9575065
d631439
 
9575065
d631439
 
 
 
 
 
 
 
 
b7cfba0
41b5e7a
 
b7cfba0
a6d6b01
3759d07
b5cc859
a6d6b01
 
9575065
41b5e7a
b79287b
a6d6b01
7c600ad
 
9575065
7b74eba
41b5e7a
 
 
7c600ad
9575065
 
 
 
 
41b5e7a
e8c4059
9575065
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import torch

IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000

CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'

@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

# Arena API
def predict(text, voice='af_heart', speed=1):
    return generate_first(text, voice, speed, use_gpu=False)[0]

random_texts = {}
for lang in ['en']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    lang = dict(a='en', b='en')[voice[0]]
    return random.choice(random_texts[lang])

CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',

'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',

'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',

'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',

'🇪🇸 🚺 Dora': 'ef_dora',

'🇪🇸 🚹 Alex': 'em_alex',
'🇪🇸 🚹 Santa': 'em_santa',

'🇫🇷 🚺 Siwis': 'ff_siwis',

'🇮🇳 🚹 Alpha': 'hf_alpha',
'🇮🇳 🚹 Beta': 'hf_beta',

'🇮🇳 🚹 Omega': 'hm_omega',
'🇮🇳 🚹 Psi': 'hm_psi',

'🇮🇹 🚺 Sara': 'if_sara',

'🇮🇹 🚺 Nicola': 'im_nicola',

'🇯🇵 🚹 Alpha': 'jf_alpha',
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',

'🇯🇵 🚹 Kumo': 'jm_kumo',

'🇧🇷 🚺 Dora': 'pf_dora',

'🇧🇷 🚹 Alex': 'pm_alex',
'🇧🇷 🚹 Santa': 'pm_santa',

'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',

'🇨🇳 🚹 Yunjian': 'zm_yunjian',
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
}
for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
This demo only showcases English, but you can directly use the model to access other languages.
'''

with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown(BANNER_TEXT, container=True)
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate")
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('Random Text', variant='secondary')
        with gr.Column():
            out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
            generate_btn = gr.Button('Generate', variant='primary')
            
    random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
    generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio], api_name=None)

if __name__ == '__main__':
    app.queue().launch()