File size: 5,439 Bytes
41b5e7a e9b69d2 41b5e7a e8c4059 e9b69d2 d989475 41b5e7a e2b24ee 41b5e7a d989475 41b5e7a e8c4059 41b5e7a d989475 41b5e7a bfb40ed 41b5e7a e9b69d2 41b5e7a e9b69d2 41b5e7a e9b69d2 c1057fc 41b5e7a c1057fc 9575065 41b5e7a c1057fc 41b5e7a 9575065 41b5e7a c1057fc 9575065 c1057fc 41b5e7a c1057fc 41b5e7a 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 9575065 d631439 b7cfba0 41b5e7a b7cfba0 a6d6b01 3759d07 b5cc859 a6d6b01 9575065 41b5e7a b79287b a6d6b01 7c600ad 9575065 7b74eba 41b5e7a 7c600ad 9575065 41b5e7a e8c4059 9575065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import torch
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000
CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
return models[True](ps, ref_s, speed)
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Arena API
def predict(text, voice='af_heart', speed=1):
return generate_first(text, voice, speed, use_gpu=False)[0]
random_texts = {}
for lang in ['en']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
lang = dict(a='en', b='en')[voice[0]]
return random.choice(random_texts[lang])
CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
'🇪🇸 🚺 Dora': 'ef_dora',
'🇪🇸 🚹 Alex': 'em_alex',
'🇪🇸 🚹 Santa': 'em_santa',
'🇫🇷 🚺 Siwis': 'ff_siwis',
'🇮🇳 🚹 Alpha': 'hf_alpha',
'🇮🇳 🚹 Beta': 'hf_beta',
'🇮🇳 🚹 Omega': 'hm_omega',
'🇮🇳 🚹 Psi': 'hm_psi',
'🇮🇹 🚺 Sara': 'if_sara',
'🇮🇹 🚺 Nicola': 'im_nicola',
'🇯🇵 🚹 Alpha': 'jf_alpha',
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
'🇯🇵 🚹 Kumo': 'jm_kumo',
'🇧🇷 🚺 Dora': 'pf_dora',
'🇧🇷 🚹 Alex': 'pm_alex',
'🇧🇷 🚹 Santa': 'pm_santa',
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
}
for v in CHOICES.values():
pipelines[v[0]].load_voice(v)
BANNER_TEXT = '''
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
This demo only showcases English, but you can directly use the model to access other languages.
'''
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(BANNER_TEXT, container=True)
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate")
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
random_btn = gr.Button('Random Text', variant='secondary')
with gr.Column():
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button('Generate', variant='primary')
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio], api_name=None)
if __name__ == '__main__':
app.queue().launch() |