File size: 8,356 Bytes
d98f3c7
 
e9b69d2
9cc0dc7
d98f3c7
e9b69d2
8d0ba45
41b5e7a
8d0ba45
d98f3c7
 
e9b69d2
8d0ba45
d989475
8d0ba45
 
41b5e7a
d98f3c7
41b5e7a
 
d989475
8d0ba45
d98f3c7
 
 
9afcf62
8d0ba45
e8c4059
d98f3c7
41b5e7a
 
 
 
 
d989475
41b5e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0ba45
d98f3c7
 
 
 
8d0ba45
d98f3c7
 
 
 
 
 
 
 
e9b69d2
8d0ba45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8e3d2
8d0ba45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8e3d2
8d0ba45
 
d98f3c7
 
 
8d0ba45
d98f3c7
 
 
 
 
 
 
 
8d0ba45
 
 
 
 
 
 
d98f3c7
8d0ba45
9afcf62
d98f3c7
8d0ba45
 
 
 
9afcf62
 
d98f3c7
 
 
 
 
 
 
 
 
 
 
 
9afcf62
8d0ba45
 
 
 
 
 
d98f3c7
 
8d0ba45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
import openai

# Check if running in a duplicate space
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
CHAR_LIMIT = None if IS_DUPLICATE else 5000

# Check if CUDA is available
CUDA_AVAILABLE = torch.cuda.is_available()

# Load the models (GPU and CPU versions)
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'

# GPU function to generate audio
@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

# Function to generate first output
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

# Function to tokenize first
def tokenize_first(text, voice='af_heart'):
    words = text.split()  # This splits the text into words based on spaces
    return words  # Return a list of words

# Function to get random text for the "Random Text" button
random_texts = {}
for lang in ['en']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    lang = dict(a='en', b='en')[voice[0]]
    return random.choice(random_texts[lang])

# OpenAI GPT-4 translation function
def translate_to_english(text, model="gpt-4"):
    try:
        response = openai.Completion.create(
            model=model,
            prompt=f"Translate the following text to English:\n\n{text}",
            temperature=0.5,
            max_tokens=500,
        )
        return response.choices[0].text.strip()
    except Exception as e:
        return str(e)

# Function to handle generation for translated text
def translate_and_generate(text, voice, speed):
    translated_text = translate_to_english(text)
    audio, tokens = generate_first(translated_text, voice, speed, use_gpu=CUDA_AVAILABLE)
    return audio, tokens, translated_text

# Predefined voices for the dropdown menu
CHOICES = {
    '🇺🇸 🚺 Heart ❤️': 'af_heart',
    '🇺🇸 🚺 Bella 🔥': 'af_bella',
    '🇺🇸 🚺 Nicole 🎧': 'af_nicole',
    '🇺🇸 🚺 Aoede': 'af_aoede',
    '🇺🇸 🚺 Kore': 'af_kore',
    '🇺🇸 🚺 Sarah': 'af_sarah',
    '🇺🇸 🚺 Nova': 'af_nova',
    '🇺🇸 🚺 Sky': 'af_sky',
    '🇺🇸 🚺 Alloy': 'af_alloy',
    '🇺🇸 🚺 Jessica': 'af_jessica',
    '🇺🇸 🚺 River': 'af_river',
    
    '🇺🇸 🚹 Michael': 'am_michael',
    '🇺🇸 🚹 Fenrir': 'am_fenrir',
    '🇺🇸 🚹 Puck': 'am_puck',
    '🇺🇸 🚹 Echo': 'am_echo',
    '🇺🇸 🚹 Eric': 'am_eric',
    '🇺🇸 🚹 Liam': 'am_liam',
    '🇺🇸 🚹 Onyx': 'am_onyx',
    '🇺🇸 🚹 Santa': 'am_santa',
    '🇺🇸 🚹 Adam': 'am_adam',
    
    '🇬🇧 🚺 Emma': 'bf_emma',
    '🇬🇧 🚺 Isabella': 'bf_isabella',
    '🇬🇧 🚺 Alice': 'bf_alice',
    '🇬🇧 🚺 Lily': 'bf_lily',
    
    '🇬🇧 🚹 George': 'bm_george',
    '🇬🇧 🚹 Fable': 'bm_fable',
    '🇬🇧 🚹 Lewis': 'bm_lewis',
    '🇬🇧 🚹 Daniel': 'bm_daniel',
    
    '🇪🇸 🚺 Dora': 'ef_dora',
    
    '🇪🇸 🚹 Alex': 'em_alex',
    '🇪🇸 🚹 Santa': 'em_santa',
    
    '🇫🇷 🚺 Siwis': 'ff_siwis',
    
    '🇮🇳 🚹 Alpha': 'hf_alpha',
    '🇮🇳 🚹 Beta': 'hf_beta',
    
    '🇮🇳 🚹 Omega': 'hm_omega',
    '🇮🇳 🚹 Psi': 'hm_psi',
    
    '🇮🇹 🚺 Sara': 'if_sara',
    
    '🇮🇹 🚺 Nicola': 'im_nicola',
    
    '🇯🇵 🚹 Alpha': 'jf_alpha',
    '🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
    '🇯🇵 🚹 Nezumi': 'jf_nezumi',
    '🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
    
    '🇯🇵 🚹 Kumo': 'jm_kumo',
    
    '🇧🇷 🚺 Dora': 'pf_dora',
    
    '🇧🇷 🚹 Alex': 'pm_alex',
    '🇧🇷 🚹 Santa': 'pm_santa',
    
    '🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
    '🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
    '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
    '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',

    '🇨🇳 🚹 Yunjian': 'zm_yunjian',
    '🇨🇳 🚹 Yunxi': 'zm_yunxi',
    '🇨🇳 🚹 Yunxia': 'zm_yunxia',
    '🇨🇳 🚹 Yunyang': 'zm_yunyang',
}

# Load voices
for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

# Build the interface
with gr.Blocks() as generate_tab:
    out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
    generate_btn = gr.Button('Generate', variant='primary')
    with gr.Accordion('Output Tokens', open=True):
        out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
        tokenize_btn = gr.Button('Tokenize', variant='secondary')
        predict_btn = gr.Button('Predict', variant='secondary', visible=False)

# Translator Tab
with gr.Blocks() as translator_tab:
    trans_out_audio = gr.Audio(label='Translated Audio Output', interactive=False, streaming=False, autoplay=True)
    trans_out_tokens = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the translated audio')
    translate_btn = gr.Button('Translate & Generate Audio', variant='primary')
    
    translate_btn.click(fn=translate_and_generate, inputs=[text, voice, speed], outputs=[trans_out_audio, trans_out_tokens, text], api_name=None)

# Main Interface
with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown('''[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
        As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
        This demo only showcases English, but you can directly use the model to access other languages.''', container=True)
    
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is usually faster, but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('Random Text', variant='secondary')
        with gr.Column():
            gr.TabbedInterface([generate_tab, translator_tab], ['Generate', 'Translator'])
    
    random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
    generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps])
    tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
    predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio])

if __name__ == '__main__':
    app.queue().launch(show_api=True)