|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
|
|
from janus.models import MultiModalityCausalLM, VLChatProcessor |
|
import numpy as np |
|
import os |
|
import PIL.Image |
|
|
|
|
|
model_path = "deepseek-ai/Janus-1.3B" |
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) |
|
tokenizer = vl_chat_processor.tokenizer |
|
|
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( |
|
model_path, trust_remote_code=True |
|
) |
|
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() |
|
|
|
conversation = [ |
|
{ |
|
"role": "User", |
|
"content": "A close-up high-contrast photo of Sydney Opera House sitting next to Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars, and radiating swirls of blue.", |
|
}, |
|
{"role": "Assistant", "content": ""}, |
|
] |
|
|
|
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( |
|
conversations=conversation, |
|
sft_format=vl_chat_processor.sft_format, |
|
system_prompt="", |
|
) |
|
prompt = sft_format + vl_chat_processor.image_start_tag |
|
|
|
|
|
@torch.inference_mode() |
|
def generate( |
|
mmgpt: MultiModalityCausalLM, |
|
vl_chat_processor: VLChatProcessor, |
|
prompt: str, |
|
temperature: float = 1, |
|
parallel_size: int = 16, |
|
cfg_weight: float = 5, |
|
image_token_num_per_image: int = 576, |
|
img_size: int = 384, |
|
patch_size: int = 16, |
|
): |
|
input_ids = vl_chat_processor.tokenizer.encode(prompt) |
|
input_ids = torch.LongTensor(input_ids) |
|
|
|
tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() |
|
for i in range(parallel_size*2): |
|
tokens[i, :] = input_ids |
|
if i % 2 != 0: |
|
tokens[i, 1:-1] = vl_chat_processor.pad_id |
|
|
|
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) |
|
|
|
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() |
|
|
|
for i in range(image_token_num_per_image): |
|
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) |
|
hidden_states = outputs.last_hidden_state |
|
|
|
logits = mmgpt.gen_head(hidden_states[:, -1, :]) |
|
logit_cond = logits[0::2, :] |
|
logit_uncond = logits[1::2, :] |
|
|
|
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) |
|
probs = torch.softmax(logits / temperature, dim=-1) |
|
|
|
next_token = torch.multinomial(probs, num_samples=1) |
|
generated_tokens[:, i] = next_token.squeeze(dim=-1) |
|
|
|
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) |
|
img_embeds = mmgpt.prepare_gen_img_embeds(next_token) |
|
inputs_embeds = img_embeds.unsqueeze(dim=1) |
|
|
|
|
|
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) |
|
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) |
|
|
|
dec = np.clip((dec + 1) / 2 * 255, 0, 255) |
|
|
|
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) |
|
visual_img[:, :, :] = dec |
|
|
|
os.makedirs('generated_samples', exist_ok=True) |
|
for i in range(parallel_size): |
|
save_path = os.path.join('generated_samples', "img_{}.jpg".format(i)) |
|
PIL.Image.fromarray(visual_img[i]).save(save_path) |
|
|
|
|
|
generate( |
|
vl_gpt, |
|
vl_chat_processor, |
|
prompt, |
|
) |