File size: 22,516 Bytes
860162f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# modified from: https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/simple_diffusion.py
import math
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
from typing import Optional, Tuple, Union
import numpy as np
import torchvision
import torchvision.utils
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
from transformers.models.llama.modeling_llama import LlamaRMSNorm as RMSNorm
class ImageHead(nn.Module):
def __init__(self, decoder_cfg, gpt_cfg, layer_id=None):
super().__init__()
self.layer_id = layer_id
cfg = (
AttrDict(
norm_type="layernorm",
is_exp_norm=False,
sequence_parallel=False,
use_userbuffer=False,
norm_eps=1e-5,
norm_bias=True,
gradient_accumulation_fusion=True,
use_fp32_head_weight=False,
)
+ gpt_cfg
)
group = PG.tensor_parallel_group()
assert cfg.norm_type in [
"layernorm",
"rmsnorm",
], f"Norm type:{cfg.norm_type} not supported"
if cfg.norm_type == "rmsnorm":
self.norm = DropoutAddRMSNorm(
cfg.n_embed,
prenorm=False,
eps=cfg.norm_eps,
is_exp_norm=cfg.is_exp_norm,
sequence_parallel=cfg.sequence_parallel,
)
else:
self.norm = DropoutAddLayerNorm(
cfg.n_embed,
prenorm=False,
eps=cfg.norm_eps,
is_exp_norm=cfg.is_exp_norm,
sequence_parallel=cfg.sequence_parallel,
bias=cfg.norm_bias,
)
multiple_of = 256
if decoder_cfg.in_channels % multiple_of != 0:
warnings.warn(
f"建议把 vocab_size 设置为 {multiple_of} 的倍数, 否则会影响矩阵乘法的性能"
)
dtype = default_dtype = torch.get_default_dtype()
if cfg.use_fp32_head_weight:
dtype = torch.float32
print(
"使用 fp32 head weight!!!! 与原来的 bf16 head weight 不兼容\n",
end="",
flush=True,
)
torch.set_default_dtype(dtype)
self.head = ColumnParallelLinear(
cfg.n_embed,
decoder_cfg.in_channels,
bias=True,
group=group,
sequence_parallel=cfg.sequence_parallel,
use_userbuffer=cfg.use_userbuffer,
gradient_accumulation_fusion=cfg.gradient_accumulation_fusion,
use_fp32_output=False,
)
torch.set_default_dtype(default_dtype)
self.use_fp32_head_weight = cfg.use_fp32_head_weight
def forward(
self, input_args, images_split_mask: Optional[torch.BoolTensor] = None, **kwargs
):
residual = None
if isinstance(input_args, tuple):
x, residual = input_args
else:
x = input_args
x = self.norm(x, residual)
if self.use_fp32_head_weight:
assert (
self.head.weight.dtype == torch.float32
), f"head.weight is {self.head.weight.dtype}"
x = x.float()
if images_split_mask is None:
logits = self.head(x)
else:
bs, n_images = images_split_mask.shape[:2]
n_embed = x.shape[-1]
images_embed = torch.masked_select(
x.unsqueeze(1), images_split_mask.unsqueeze(-1)
)
images_embed = images_embed.view((bs * n_images, -1, n_embed))
logits = self.head(images_embed)
return logits
class GlobalResponseNorm(nn.Module):
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
return torch.addcmul(self.bias, (self.weight * nx + 1), x, value=1)
class Downsample2D(nn.Module):
"""A 2D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
padding: int = 1,
name: str = "conv",
kernel_size=3,
stride=2,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
self.name = name
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
if use_conv:
conv = nn.Conv2d(
self.channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.Conv2d_0 = conv
self.conv = conv
elif name == "Conv2d_0":
self.conv = conv
else:
self.conv = conv
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(
0, 3, 1, 2
)
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class Upsample2D(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
use_conv_transpose: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
stride=2,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
interpolate=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.interpolate = interpolate
self.stride = stride
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
conv = None
if use_conv_transpose:
if kernel_size is None:
kernel_size = 4
conv = nn.ConvTranspose2d(
channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
elif use_conv:
if kernel_size is None:
kernel_size = 3
conv = nn.Conv2d(
self.channels,
self.out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(
self,
hidden_states: torch.Tensor,
output_size: Optional[int] = None,
*args,
**kwargs,
) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(
0, 3, 1, 2
)
if self.use_conv_transpose:
return self.conv(hidden_states)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output
# size and do not make use of `scale_factor=2`
if self.interpolate:
if output_size is None:
hidden_states = F.interpolate(
hidden_states, scale_factor=self.stride, mode="nearest"
)
else:
hidden_states = F.interpolate(
hidden_states, size=output_size, mode="nearest"
)
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if self.use_conv:
if self.name == "conv":
hidden_states = self.conv(hidden_states)
else:
hidden_states = self.Conv2d_0(hidden_states)
return hidden_states
class ConvNextBlock(nn.Module):
def __init__(
self,
channels,
norm_eps,
elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
res_ffn_factor: int = 4,
):
super().__init__()
self.depthwise = nn.Conv2d(
channels,
channels,
kernel_size=7,
padding=3,
groups=channels,
bias=use_bias,
)
self.norm = RMSNorm(channels, norm_eps)
self.channelwise_linear_1 = nn.Linear(
channels, int(channels * res_ffn_factor), bias=use_bias
)
self.channelwise_act = nn.GELU()
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
self.channelwise_linear_2 = nn.Linear(
int(channels * res_ffn_factor), channels, bias=use_bias
)
self.channelwise_dropout = nn.Dropout(hidden_dropout)
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
def forward(self, x, cond_embeds):
x_res = x
x = self.depthwise(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.channelwise_linear_1(x)
x = self.channelwise_act(x)
x = self.channelwise_norm(x)
x = self.channelwise_linear_2(x)
x = self.channelwise_dropout(x)
x = x.permute(0, 3, 1, 2)
x = x + x_res
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
# x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
x = torch.addcmul(
shift[:, :, None, None], x, (1 + scale)[:, :, None, None], value=1
)
return x
class Patchify(nn.Module):
def __init__(
self,
in_channels,
block_out_channels,
patch_size,
bias,
elementwise_affine,
eps,
kernel_size=None,
):
super().__init__()
if kernel_size is None:
kernel_size = patch_size
self.patch_conv = nn.Conv2d(
in_channels,
block_out_channels,
kernel_size=kernel_size,
stride=patch_size,
bias=bias,
)
self.norm = RMSNorm(block_out_channels, eps)
def forward(self, x):
embeddings = self.patch_conv(x)
embeddings = embeddings.permute(0, 2, 3, 1)
embeddings = self.norm(embeddings)
embeddings = embeddings.permute(0, 3, 1, 2)
return embeddings
class Unpatchify(nn.Module):
def __init__(
self, in_channels, out_channels, patch_size, bias, elementwise_affine, eps
):
super().__init__()
self.norm = RMSNorm(in_channels, eps)
self.unpatch_conv = nn.Conv2d(
in_channels,
out_channels * patch_size * patch_size,
kernel_size=1,
bias=bias,
)
self.pixel_shuffle = nn.PixelShuffle(patch_size)
self.patch_size = patch_size
def forward(self, x):
# [b, c, h, w]
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
x = self.unpatch_conv(x)
x = self.pixel_shuffle(x)
return x
class UVitBlock(nn.Module):
def __init__(
self,
channels,
out_channels,
num_res_blocks,
stride,
hidden_size,
hidden_dropout,
elementwise_affine,
norm_eps,
use_bias,
downsample: bool,
upsample: bool,
res_ffn_factor: int = 4,
seq_len=None,
concat_input=False,
original_input_channels=None,
use_zero=True,
norm_type="RMS",
):
super().__init__()
self.res_blocks = nn.ModuleList()
for i in range(num_res_blocks):
conv_block = ConvNextBlock(
channels,
norm_eps,
elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
res_ffn_factor=res_ffn_factor,
)
self.res_blocks.append(conv_block)
if downsample:
self.downsample = Downsample2D(
channels=channels,
out_channels=out_channels,
use_conv=True,
name="Conv2d_0",
kernel_size=3,
padding=1,
stride=stride,
norm_type="rms_norm",
eps=norm_eps,
elementwise_affine=elementwise_affine,
bias=use_bias,
)
else:
self.downsample = None
if upsample:
self.upsample = Upsample2D(
channels=channels,
out_channels=out_channels,
use_conv_transpose=False,
use_conv=True,
kernel_size=3,
padding=1,
stride=stride,
name="conv",
norm_type="rms_norm",
eps=norm_eps,
elementwise_affine=elementwise_affine,
bias=use_bias,
interpolate=True,
)
else:
self.upsample = None
def forward(self, x, emb, recompute=False):
for res_block in self.res_blocks:
x = res_block(x, emb)
if self.downsample is not None:
x = self.downsample(x)
if self.upsample is not None:
x = self.upsample(x)
return x
class ShallowUViTEncoder(nn.Module):
def __init__(
self,
input_channels=3,
stride=4,
kernel_size=7,
padding=None,
block_out_channels=(768,),
layers_in_middle=2,
hidden_size=2048,
elementwise_affine=True,
use_bias=True,
norm_eps=1e-6,
dropout=0.0,
use_mid_block=True,
**kwargs,
):
super().__init__()
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0
)
self.time_embed = TimestepEmbedding(
block_out_channels[0], hidden_size, sample_proj_bias=use_bias
)
if padding is None:
padding = math.ceil(kernel_size - stride)
self.in_conv = nn.Conv2d(
in_channels=input_channels,
out_channels=block_out_channels[0],
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
if use_mid_block:
self.mid_block = UVitBlock(
block_out_channels[-1],
block_out_channels[-1],
num_res_blocks=layers_in_middle,
hidden_size=hidden_size,
hidden_dropout=dropout,
elementwise_affine=elementwise_affine,
norm_eps=norm_eps,
use_bias=use_bias,
downsample=False,
upsample=False,
stride=1,
res_ffn_factor=4,
)
else:
self.mid_block = None
def get_num_extra_tensors(self):
return 2
def forward(self, x, timesteps):
bs = x.shape[0]
dtype = x.dtype
t_emb = self.time_proj(timesteps.flatten()).view(bs, -1).to(dtype)
t_emb = self.time_embed(t_emb)
x_emb = self.in_conv(x)
if self.mid_block is not None:
x_emb = self.mid_block(x_emb, t_emb)
hs = [x_emb]
return x_emb, t_emb, hs
class ShallowUViTDecoder(nn.Module):
def __init__(
self,
in_channels=768,
out_channels=3,
block_out_channels: Tuple[int] = (768,),
upsamples=2,
layers_in_middle=2,
hidden_size=2048,
elementwise_affine=True,
norm_eps=1e-6,
use_bias=True,
dropout=0.0,
use_mid_block=True,
**kwargs,
):
super().__init__()
if use_mid_block:
self.mid_block = UVitBlock(
in_channels + block_out_channels[-1],
block_out_channels[
-1
], # In fact, the parameter is not used because it has no effect when both downsample and upsample are set to false.
num_res_blocks=layers_in_middle,
hidden_size=hidden_size,
hidden_dropout=dropout,
elementwise_affine=elementwise_affine,
norm_eps=norm_eps,
use_bias=use_bias,
downsample=False,
upsample=False,
stride=1,
res_ffn_factor=4,
)
else:
self.mid_block = None
self.out_convs = nn.ModuleList()
for rank in range(upsamples):
if rank == upsamples - 1:
curr_out_channels = out_channels
else:
curr_out_channels = block_out_channels[-1]
if rank == 0:
curr_in_channels = block_out_channels[-1] + in_channels
else:
curr_in_channels = block_out_channels[-1]
self.out_convs.append(
Unpatchify(
curr_in_channels,
curr_out_channels,
patch_size=2,
bias=use_bias,
elementwise_affine=elementwise_affine,
eps=norm_eps,
)
)
self.input_norm = RMSNorm(in_channels, norm_eps)
def forward(self, x, hs, t_emb):
x = x.permute(0, 2, 3, 1)
x = self.input_norm(x)
x = x.permute(0, 3, 1, 2)
x = torch.cat([x, hs.pop()], dim=1)
if self.mid_block is not None:
x = self.mid_block(x, t_emb)
for out_conv in self.out_convs:
x = out_conv(x)
assert len(hs) == 0
return x
|