File size: 6,571 Bytes
860162f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import io

app = FastAPI()

# Load model and processor
model_path = "deepseek-ai/Janus-1.3B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
                                              language_config=language_config,
                                              trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'


@torch.inference_mode()
def multimodal_understanding(image_data, question, seed, top_p, temperature):
    torch.cuda.empty_cache()
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)

    conversation = [
        {
            "role": "User",
            "content": f"<image_placeholder>\n{question}",
            "images": [image_data],
        },
        {"role": "Assistant", "content": ""},
    ]

    pil_images = [Image.open(io.BytesIO(image_data))]
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        do_sample=False if temperature == 0 else True,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return answer


@app.post("/understand_image_and_question/")
async def understand_image_and_question(
    file: UploadFile = File(...),
    question: str = Form(...),
    seed: int = Form(42),
    top_p: float = Form(0.95),
    temperature: float = Form(0.1)
):
    image_data = await file.read()
    response = multimodal_understanding(image_data, question, seed, top_p, temperature)
    return JSONResponse({"response": response})


def generate(input_ids,
             width,
             height,
             temperature: float = 1,
             parallel_size: int = 5,
             cfg_weight: float = 5,
             image_token_num_per_image: int = 576,
             patch_size: int = 16):
    torch.cuda.empty_cache()
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
        pkv = outputs.past_key_values
        hidden_states = outputs.last_hidden_state
        logits = vl_gpt.gen_head(hidden_states[:, -1, :])
        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]
        logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)
        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, i] = next_token.squeeze(dim=-1)
        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
        inputs_embeds = img_embeds.unsqueeze(dim=1)
    patches = vl_gpt.gen_vision_model.decode_code(
        generated_tokens.to(dtype=torch.int), 
        shape=[parallel_size, 8, width // patch_size, height // patch_size]
    )

    return generated_tokens.to(dtype=torch.int), patches


def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    return visual_img


@torch.inference_mode()
def generate_image(prompt, seed, guidance):
    torch.cuda.empty_cache()
    seed = seed if seed is not None else 12345
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 5
    
    with torch.no_grad():
        messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
            conversations=messages,
            sft_format=vl_chat_processor.sft_format,
            system_prompt=''
        )
        text = text + vl_chat_processor.image_start_tag
        input_ids = torch.LongTensor(tokenizer.encode(text))
        _, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size)
        images = unpack(patches, width // 16 * 16, height // 16 * 16)

        return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]


@app.post("/generate_images/")
async def generate_images(
    prompt: str = Form(...),
    seed: int = Form(None),
    guidance: float = Form(5.0),
):
    try:
        images = generate_image(prompt, seed, guidance)
        def image_stream():
            for img in images:
                buf = io.BytesIO()
                img.save(buf, format='PNG')
                buf.seek(0)
                yield buf.read()

        return StreamingResponse(image_stream(), media_type="multipart/related")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")



if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)