File size: 8,206 Bytes
860162f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from attrdict import AttrDict
from einops import rearrange
import torch
from transformers.configuration_utils import PretrainedConfig
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    PreTrainedModel,
    LlamaConfig,
    LlamaForCausalLM,
)
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from janus.janusflow.models.clip_encoder import CLIPVisionTower
from janus.janusflow.models.uvit import ShallowUViTEncoder, ShallowUViTDecoder
import torch.nn as nn


def model_name_to_cls(cls_name):

    if "CLIPVisionTower" in cls_name:
        cls = CLIPVisionTower
    elif "ShallowUViTEncoder" in cls_name:
        cls = ShallowUViTEncoder
    elif "ShallowUViTDecoder" in cls_name:
        cls = ShallowUViTDecoder
    else:
        raise ValueError(f"class_name {cls_name} is invalid.")

    return cls


class VisionUnderstandEncoderConfig(PretrainedConfig):
    model_type = "vision_und_enc"
    cls: str = ""
    params: AttrDict = {}

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.cls = kwargs.get("cls", "")
        if not isinstance(self.cls, str):
            self.cls = self.cls.__name__

        self.params = AttrDict(kwargs.get("params", {}))


class VisionGenerationEncoderConfig(PretrainedConfig):
    model_type = "vision_gen_enc"
    cls: str = ""
    params: AttrDict = {}

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.cls = kwargs.get("cls", "")
        if not isinstance(self.cls, str):
            self.cls = self.cls.__name__

        self.params = AttrDict(kwargs.get("params", {}))


class VisionGenerationDecoderConfig(PretrainedConfig):
    model_type = "vision_gen_dec"
    cls: str = ""
    params: AttrDict = {}

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.cls = kwargs.get("cls", "")
        if not isinstance(self.cls, str):
            self.cls = self.cls.__name__

        self.params = AttrDict(kwargs.get("params", {}))


class MultiModalityConfig(PretrainedConfig):
    model_type = "multi_modality"
    vision_und_enc_config: VisionUnderstandEncoderConfig
    language_config: LlamaConfig

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        vision_und_enc_config = kwargs.get("vision_und_enc_config", {})
        self.vision_und_enc_config = VisionUnderstandEncoderConfig(
            **vision_und_enc_config
        )

        vision_gen_enc_config = kwargs.get("vision_gen_enc_config", {})
        self.vision_gen_enc_config = VisionGenerationEncoderConfig(
            **vision_gen_enc_config
        )

        vision_gen_dec_config = kwargs.get("vision_gen_dec_config", {})
        self.vision_gen_dec_config = VisionGenerationDecoderConfig(
            **vision_gen_dec_config
        )

        language_config = kwargs.get("language_config", {})
        if isinstance(language_config, LlamaConfig):
            self.language_config = language_config
        else:
            self.language_config = LlamaConfig(**language_config)


class MultiModalityPreTrainedModel(PreTrainedModel):
    config_class = MultiModalityConfig
    base_model_prefix = "multi_modality"
    _no_split_modules = []
    _skip_keys_device_placement = "past_key_values"


class MultiModalityCausalLM(MultiModalityPreTrainedModel):

    def __init__(self, config: MultiModalityConfig):
        super().__init__(config)

        # vision understanding encoder
        vision_und_enc_config = config.vision_und_enc_config
        vision_und_enc_cls = model_name_to_cls(vision_und_enc_config.cls)
        self.vision_und_enc_model = vision_und_enc_cls(**vision_und_enc_config.params)

        # vision understanding aligner
        self.vision_und_enc_aligner = nn.Linear(1024, 2048, bias=True)

        # begin of understanding embedding
        self.beg_of_und_embed = nn.Parameter(torch.zeros(1, 2048))

        # vision generation encoder
        vision_gen_enc_config = config.vision_gen_enc_config
        vision_gen_enc_cls = model_name_to_cls(vision_gen_enc_config.cls)
        self.vision_gen_enc_model = vision_gen_enc_cls(**vision_gen_enc_config.params)

        # vision generation encoder aligner
        self.vision_gen_enc_aligner = nn.Linear(768, 2048, bias=True)

        # vision generation decoder
        vision_gen_dec_config = config.vision_gen_dec_config
        vision_gen_dec_cls = model_name_to_cls(vision_gen_dec_config.cls)
        self.vision_gen_dec_model = vision_gen_dec_cls(**vision_gen_dec_config.params)

        # language model
        language_config = config.language_config
        self.language_model = LlamaForCausalLM(language_config)

        # vision generation decoder aligner
        self.vision_gen_dec_aligner_norm = LlamaRMSNorm(
            2048, eps=language_config.rms_norm_eps
        )
        self.vision_gen_dec_aligner = nn.Linear(2048, 768, bias=True)

    def prepare_inputs_embeds(
        self,
        input_ids: torch.LongTensor,
        pixel_values: torch.FloatTensor,
        images_seq_mask: torch.LongTensor,
        images_emb_mask: torch.LongTensor,
        **kwargs,
    ):
        """

        Args:
            input_ids (torch.LongTensor): [b, T]
            pixel_values (torch.FloatTensor):   [b, n_images, 3, h, w]
            images_seq_mask (torch.BoolTensor): [b, T]
            images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens]

            assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask)

        Returns:
            input_embeds (torch.Tensor): [b, T, D]
        """

        bs, n = pixel_values.shape[0:2]
        images = rearrange(pixel_values, "b n c h w -> (b n) c h w")
        # [b x n, T2, D]
        images_embeds = self.vision_und_enc_model(images)
        images_embeds = self.vision_und_enc_aligner(images_embeds)
        # print(images_embeds.shape, self.beg_of_und_embed.shape, images_seq_mask.shape, input_ids.shape)
        beg_of_und_embed = self.beg_of_und_embed[0].detach().clone()
        images_embeds = torch.cat(
            [
                beg_of_und_embed.view(1, 1, -1).repeat(images_embeds.shape[0], 1, 1),
                images_embeds,
            ],
            dim=1,
        )
        # [b x n, T2, D] -> [b, n x T2, D]
        images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n)
        # [b, n, T2] -> [b, n x T2]
        images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)")

        # [b, T, D]
        input_ids[input_ids < 0] = 0  # ignore the image embeddings
        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)

        # replace with the image embeddings
        inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask]

        return inputs_embeds


AutoConfig.register("vision_und_enc", VisionUnderstandEncoderConfig)
AutoConfig.register("vision_gen_enc", VisionGenerationEncoderConfig)
AutoConfig.register("vision_gen_dec", VisionGenerationDecoderConfig)
AutoConfig.register("multi_modality", MultiModalityConfig)
AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)