hehetest / app.py
hewoo's picture
Create app.py
cc0604c verified
raw
history blame
2.1 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
import os
# Hugging Face ๋ชจ๋ธ ID
model_id = "hewoo/meta-llama-3.2-3b-chatbot" # ์—…๋กœ๋“œํ•œ ๋ชจ๋ธ์˜ repo_id
token = os.getenv("HF_API_TOKEN") # Hugging Face API ํ† ํฐ (ํ•„์š” ์‹œ ์„ค์ •)
# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)
# ํ…์ŠคํŠธ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ ์„ค์ •
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)
# ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋ฐ ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ ์„ค์ •
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
persist_directory = "./chroma_batch_vectors"
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_model.encode)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์š”์•ฝ ํ•จ์ˆ˜
def summarize_results(search_results):
combined_text = "\n".join([result.page_content for result in search_results])
summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
return summary
# ๊ฒ€์ƒ‰ ๋ฐ ์‘๋‹ต ์ƒ์„ฑ ํ•จ์ˆ˜
def generate_response(user_input):
# ๊ฒ€์ƒ‰ ๋ฐ ๋งฅ๋ฝ ์ƒ์„ฑ
search_results = retriever.get_relevant_documents(user_input)
context = "\n".join([result.page_content for result in search_results])
# ๋ชจ๋ธ์— ๋งฅ๋ฝ๊ณผ ์งˆ๋ฌธ ์ „๋‹ฌ
input_text = f"๋งฅ๋ฝ: {context}\n์งˆ๋ฌธ: {user_input}"
response = pipe(input_text)[0]["generated_text"]
return response
# Streamlit ์•ฑ UI
st.title("์ฑ—๋ด‡ํ…Œ์ŠคํŠธ")
st.write("Llama 3.2-3B ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•ด ์ฃผ์„ธ์š”.")
# ์‚ฌ์šฉ์ž ์ž…๋ ฅ ๋ฐ›๊ธฐ
user_input = st.text_input("์งˆ๋ฌธ")
if user_input:
response = generate_response(user_input)
st.write("์ฑ—๋ด‡ ์‘๋‹ต:", response)