Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Hugging Face ๋ชจ๋ธ ID
|
8 |
+
model_id = "hewoo/meta-llama-3.2-3b-chatbot" # ์
๋ก๋ํ ๋ชจ๋ธ์ repo_id
|
9 |
+
token = os.getenv("HF_API_TOKEN") # Hugging Face API ํ ํฐ (ํ์ ์ ์ค์ )
|
10 |
+
|
11 |
+
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)
|
14 |
+
|
15 |
+
# ํ
์คํธ ์์ฑ ํ์ดํ๋ผ์ธ ์ค์
|
16 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)
|
17 |
+
|
18 |
+
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ฐ ๊ฒ์ ๊ธฐ๋ฅ ์ค์
|
19 |
+
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
20 |
+
persist_directory = "./chroma_batch_vectors"
|
21 |
+
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_model.encode)
|
22 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
23 |
+
|
24 |
+
# ๊ฒ์ ๊ฒฐ๊ณผ ์์ฝ ํจ์
|
25 |
+
def summarize_results(search_results):
|
26 |
+
combined_text = "\n".join([result.page_content for result in search_results])
|
27 |
+
summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
28 |
+
return summary
|
29 |
+
|
30 |
+
# ๊ฒ์ ๋ฐ ์๋ต ์์ฑ ํจ์
|
31 |
+
def generate_response(user_input):
|
32 |
+
# ๊ฒ์ ๋ฐ ๋งฅ๋ฝ ์์ฑ
|
33 |
+
search_results = retriever.get_relevant_documents(user_input)
|
34 |
+
context = "\n".join([result.page_content for result in search_results])
|
35 |
+
|
36 |
+
# ๋ชจ๋ธ์ ๋งฅ๋ฝ๊ณผ ์ง๋ฌธ ์ ๋ฌ
|
37 |
+
input_text = f"๋งฅ๋ฝ: {context}\n์ง๋ฌธ: {user_input}"
|
38 |
+
response = pipe(input_text)[0]["generated_text"]
|
39 |
+
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Streamlit ์ฑ UI
|
43 |
+
st.title("์ฑ๋ดํ
์คํธ")
|
44 |
+
st.write("Llama 3.2-3B ๋ชจ๋ธ์ ์ฌ์ฉํ ์ฑ๋ด์
๋๋ค. ์ง๋ฌธ์ ์
๋ ฅํด ์ฃผ์ธ์.")
|
45 |
+
|
46 |
+
# ์ฌ์ฉ์ ์
๋ ฅ ๋ฐ๊ธฐ
|
47 |
+
user_input = st.text_input("์ง๋ฌธ")
|
48 |
+
if user_input:
|
49 |
+
response = generate_response(user_input)
|
50 |
+
st.write("์ฑ๋ด ์๋ต:", response)
|