File size: 2,240 Bytes
cc0604c ee37e7f cc0604c ee37e7f 1dc17cb ee37e7f cc0604c ee37e7f a91fe67 ee37e7f cc0604c ee37e7f c7f958e ee37e7f c7f958e ee37e7f c7f958e ee37e7f c7f958e ee37e7f cc0604c 1dc17cb cc0604c ee37e7f a91fe67 cc0604c ee37e7f a91fe67 cc0604c a91fe67 cc0604c a91fe67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
import os
# Hugging Face λͺ¨λΈ ID
model_id = "hewoo/hehehehe"
token = os.getenv("HF_API_TOKEN") # νμν κ²½μ° μ¬μ©μμκ² Hugging Face API ν ν° μ
λ ₯μ μμ²ν μ μμ
# λͺ¨λΈκ³Ό ν ν¬λμ΄μ λ‘λ
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)
# ν
μ€νΈ μμ± νμ΄νλΌμΈ μ€μ
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)
# μ¬μ©μ μ μ μλ² λ© ν΄λμ€ μμ±
class CustomEmbedding:
def __init__(self, model):
self.model = model
def embed_query(self, text):
return self.model.encode(text, convert_to_tensor=True).tolist()
def embed_documents(self, texts):
return [self.model.encode(text, convert_to_tensor=True).tolist() for text in texts]
# μλ² λ© λͺ¨λΈ λ° λ²‘ν° μ€ν μ΄ μ€μ
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embedding_function = CustomEmbedding(embedding_model)
# Chroma λ²‘ν° μ€ν μ΄ μ€μ
persist_directory = "./chroma_batch_vectors" # Spaces νκ²½μ λ§κ² μ‘°μ νμ
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_function)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# μ§λ¬Έμ λν μλ΅ μμ± ν¨μ
def generate_response(user_input):
search_results = retriever.get_relevant_documents(user_input)
context = "\n".join([result.page_content for result in search_results])
input_text = f"λ§₯λ½: {context}\nμ§λ¬Έ: {user_input}"
response = pipe(input_text)[0]["generated_text"]
return response
# Streamlit μ± UI
st.title("μ±λ΄ test")
st.write("Llama 3.2-3B λͺ¨λΈμ μ¬μ©ν μ±λ΄μ
λλ€. μ§λ¬Έμ μ
λ ₯ν΄ μ£ΌμΈμ.")
# μ¬μ©μ μ
λ ₯ λ°κΈ°
user_input = st.text_input("μ§λ¬Έ")
if user_input:
response = generate_response(user_input)
st.write("μ±λ΄ μλ΅:", response)
|