File size: 2,240 Bytes
cc0604c
 
 
 
ee37e7f
cc0604c
ee37e7f
1dc17cb
ee37e7f
cc0604c
ee37e7f
 
 
a91fe67
ee37e7f
 
cc0604c
ee37e7f
c7f958e
 
 
 
 
ee37e7f
c7f958e
 
ee37e7f
c7f958e
ee37e7f
 
 
c7f958e
ee37e7f
 
 
 
cc0604c
1dc17cb
cc0604c
 
 
ee37e7f
 
a91fe67
cc0604c
 
ee37e7f
a91fe67
 
cc0604c
 
 
a91fe67
cc0604c
a91fe67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
import os

# Hugging Face λͺ¨λΈ ID
model_id = "hewoo/hehehehe"
token = os.getenv("HF_API_TOKEN")  # ν•„μš”ν•œ 경우 μ‚¬μš©μžμ—κ²Œ Hugging Face API 토큰 μž…λ ₯을 μš”μ²­ν•  수 있음

# λͺ¨λΈκ³Ό ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)

# ν…μŠ€νŠΈ 생성 νŒŒμ΄ν”„λΌμΈ μ„€μ •
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)

# μ‚¬μš©μž μ •μ˜ μž„λ² λ”© 클래슀 생성
class CustomEmbedding:
    def __init__(self, model):
        self.model = model

    def embed_query(self, text):
        return self.model.encode(text, convert_to_tensor=True).tolist()

    def embed_documents(self, texts):
        return [self.model.encode(text, convert_to_tensor=True).tolist() for text in texts]

# μž„λ² λ”© λͺ¨λΈ 및 벑터 μŠ€ν† μ–΄ μ„€μ •
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embedding_function = CustomEmbedding(embedding_model)

# Chroma 벑터 μŠ€ν† μ–΄ μ„€μ •
persist_directory = "./chroma_batch_vectors"  # Spaces ν™˜κ²½μ— 맞게 μ‘°μ • ν•„μš”
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_function)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})

# μ§ˆλ¬Έμ— λŒ€ν•œ 응닡 생성 ν•¨μˆ˜
def generate_response(user_input):
    search_results = retriever.get_relevant_documents(user_input)
    context = "\n".join([result.page_content for result in search_results])
    input_text = f"λ§₯락: {context}\n질문: {user_input}"
    response = pipe(input_text)[0]["generated_text"]
    return response

# Streamlit μ•± UI
st.title("챗봇 test")
st.write("Llama 3.2-3B λͺ¨λΈμ„ μ‚¬μš©ν•œ μ±—λ΄‡μž…λ‹ˆλ‹€. μ§ˆλ¬Έμ„ μž…λ ₯ν•΄ μ£Όμ„Έμš”.")

# μ‚¬μš©μž μž…λ ₯ λ°›κΈ°
user_input = st.text_input("질문")
if user_input:
    response = generate_response(user_input)
    st.write("챗봇 응닡:", response)