File size: 2,592 Bytes
cc0604c
 
 
 
1dc17cb
 
cc0604c
1dc17cb
 
cc0604c
1dc17cb
 
 
 
cc0604c
1dc17cb
 
 
 
 
 
cc0604c
1dc17cb
c7f958e
 
 
 
 
1dc17cb
c7f958e
 
1dc17cb
c7f958e
1dc17cb
 
 
 
c7f958e
1dc17cb
 
 
 
cc0604c
1dc17cb
cc0604c
1dc17cb
cc0604c
 
 
 
 
 
1dc17cb
 
 
 
 
cc0604c
1dc17cb
cc0604c
 
1dc17cb
 
cc0604c
 
 
 
 
1dc17cb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
import gc
import psutil

# ๋ชจ๋ธ ID (๊ณต๊ฐœ๋œ ๋ชจ๋ธ์ด์–ด์•ผ ํ•จ)
model_id = "hewoo/hehehehe"

# ๋ฉ”๋ชจ๋ฆฌ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•จ์ˆ˜
def monitor_memory():
    memory_info = psutil.virtual_memory()
    st.write(f"ํ˜„์žฌ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {memory_info.percent}%")

# ์บ์‹œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋ฐ ํŒŒ์ดํ”„๋ผ์ธ ๋กœ๋“œ
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(model_id)
    return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)

# ์‚ฌ์šฉ์ž ์ •์˜ ์ž„๋ฒ ๋”ฉ ํด๋ž˜์Šค
class CustomEmbedding:
    def __init__(self, model):
        self.model = model

    def embed_query(self, text):
        return self.model.encode(text, convert_to_tensor=True).tolist()

    def embed_documents(self, texts):
        return [self.model.encode(text, convert_to_tensor=True).tolist() for text in texts]

# ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋ฐ ๋ฒกํ„ฐ ์Šคํ† ์–ด ์„ค์ •
@st.cache_resource
def load_embedding_model():
    return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

@st.cache_resource
def load_vectorstore(embedding_model):
    embedding_function = CustomEmbedding(embedding_model)
    return Chroma(persist_directory="./chroma_batch_vectors", embedding_function=embedding_function)

# ์งˆ๋ฌธ์— ๋Œ€ํ•œ ์‘๋‹ต ์ƒ์„ฑ ํ•จ์ˆ˜
def generate_response(user_input):
    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    search_results = retriever.get_relevant_documents(user_input)
    context = "\n".join([result.page_content for result in search_results])
    input_text = f"๋งฅ๋ฝ: {context}\n์งˆ๋ฌธ: {user_input}"
    response = pipe(input_text)[0]["generated_text"]
    return response

# ๋ชจ๋ธ ๋ฐ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ
pipe = load_model()
embedding_model = load_embedding_model()
vectorstore = load_vectorstore(embedding_model)

# Streamlit ์•ฑ UI
st.title("์ฑ—๋ด‡ ๋ฐ๋ชจ")
st.write("Llama 3.2-3B ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•ด ์ฃผ์„ธ์š”.")

monitor_memory()  # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ํ™•์ธ

# ์‚ฌ์šฉ์ž ์ž…๋ ฅ ๋ฐ›๊ธฐ
user_input = st.text_input("์งˆ๋ฌธ")
if user_input:
    response = generate_response(user_input)
    st.write("์ฑ—๋ด‡ ์‘๋‹ต:", response)
    monitor_memory()  # ๋ฉ”๋ชจ๋ฆฌ ์ƒํƒœ ์—…๋ฐ์ดํŠธ

    # ๋ฉ”๋ชจ๋ฆฌ ํ•ด์ œ
    del response
    gc.collect()