File size: 2,102 Bytes
cc0604c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
import os

# Hugging Face ๋ชจ๋ธ ID
model_id = "hewoo/meta-llama-3.2-3b-chatbot"  # ์—…๋กœ๋“œํ•œ ๋ชจ๋ธ์˜ repo_id
token = os.getenv("HF_API_TOKEN")  # Hugging Face API ํ† ํฐ (ํ•„์š” ์‹œ ์„ค์ •)

# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)

# ํ…์ŠคํŠธ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ ์„ค์ •
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.5, top_p=0.85, top_k=40, repetition_penalty=1.2)

# ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋ฐ ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ ์„ค์ •
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
persist_directory = "./chroma_batch_vectors"
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_model.encode)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})

# ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์š”์•ฝ ํ•จ์ˆ˜
def summarize_results(search_results):
    combined_text = "\n".join([result.page_content for result in search_results])
    summary = summarizer(combined_text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
    return summary

# ๊ฒ€์ƒ‰ ๋ฐ ์‘๋‹ต ์ƒ์„ฑ ํ•จ์ˆ˜
def generate_response(user_input):
    # ๊ฒ€์ƒ‰ ๋ฐ ๋งฅ๋ฝ ์ƒ์„ฑ
    search_results = retriever.get_relevant_documents(user_input)
    context = "\n".join([result.page_content for result in search_results])

    # ๋ชจ๋ธ์— ๋งฅ๋ฝ๊ณผ ์งˆ๋ฌธ ์ „๋‹ฌ
    input_text = f"๋งฅ๋ฝ: {context}\n์งˆ๋ฌธ: {user_input}"
    response = pipe(input_text)[0]["generated_text"]

    return response

# Streamlit ์•ฑ UI
st.title("์ฑ—๋ด‡ํ…Œ์ŠคํŠธ")
st.write("Llama 3.2-3B ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์„ ์ž…๋ ฅํ•ด ์ฃผ์„ธ์š”.")

# ์‚ฌ์šฉ์ž ์ž…๋ ฅ ๋ฐ›๊ธฐ
user_input = st.text_input("์งˆ๋ฌธ")
if user_input:
    response = generate_response(user_input)
    st.write("์ฑ—๋ด‡ ์‘๋‹ต:", response)